Noble metal cocatalysts have shown great potential in boosting the performance of CdS in photocatalytic water splitting.However,the mechanism and kinetics of electron transfer in noble-metal-decorated CdS during pract...Noble metal cocatalysts have shown great potential in boosting the performance of CdS in photocatalytic water splitting.However,the mechanism and kinetics of electron transfer in noble-metal-decorated CdS during practical hydrogen evolution is not clearly elucidated.Herein,Pt-nanoparticle-decorated CdS nanorods(CdS/Pt)are utilized as the model system to analyze the electron transfer kinetics in CdS/Pt heterojunction.Through femtosecond transient absorption spectroscopy,three dominating exciton quenching pathways are observed and assigned to the trapping of photogenerated electrons at shallow states,recombination of free electrons and trapped holes,and radiative recombination of locally photogenerated electron-hole pairs.The introduction of Pt cocatalyst can release the electrons trapped at the shallow states and construct an ultrafast electron transfer tunnel at the CdS/Pt interface.When CdS/Pt is dispersed in acetonitrile,the lifetime and rate for interfacial electron transfer are respectively calculated to be~5.5 ps and~3.5×10^(10) s^(−1).The CdS/Pt is again dispersed in water to simulate photocatalytic water splitting.The lifetime of the interfacial electron transfer decreases to~5.1 ps and the electron transfer rate increases to~4.9×10^(10) s^(−1),confirming that Pt nanoparticles serve as the main active sites of hydrogen evolution.This work reveals the role of Pt cocatalysts in enhancing the photocatalytic performance of CdS from the perspective of electron transfer kinetics.展开更多
Underwater imaging posts a challenge due to the degradation by the absorption and scattering occurred during light propagation as well as poor lighting conditions in water medium Although image filtering techniques ar...Underwater imaging posts a challenge due to the degradation by the absorption and scattering occurred during light propagation as well as poor lighting conditions in water medium Although image filtering techniques are utilized to improve image quality effectively, problems of the distortion of image details and the bias of color correction still exist in output images due to the complexity of image texture distribution. This paper proposes a new underwater image enhancement method based on image struc- tural decomposition. By introducing a curvature factor into the Mumford_Shah_G decomposition algorithm, image details and struc- ture components are better preserved without the gradient effect. Thus, histogram equalization and Retinex algorithms are applied in the decomposed structure component for global image enhancement and non-uniform brightness correction for gray level and the color images, then the optical absorption spectrum in water medium is incorporate to improve the color correction. Finally, the en- hauced structure and preserved detail component are re.composed to generate the output. Experiments with real underwater images verify the image improvement by the proposed method in image contrast, brightness and color fidelity.展开更多
H_(2)S is one of the most important characteristic decomposition components of SF_(6)insulated gas,and the detection of trace H_(2)S is significant for early fault diagnosis of gas insulated electrical equipment.A 157...H_(2)S is one of the most important characteristic decomposition components of SF_(6)insulated gas,and the detection of trace H_(2)S is significant for early fault diagnosis of gas insulated electrical equipment.A 1578 nm wavelength distributed feedback diode laser(DFB-DL)based cavity ring-down spectroscopy(CRDS)experimental platform is developed to monitor the concentrations of H_(2)S in SF_(6)and SF_(6)/N_(2)mixture carrier gas.The detection sensitivity is higher than 1×10^(-6).The absorption cross section parameterσis vital for calculating the concentration.With repeated experiments using standard gas samples,parameterσof H_(2)S in pure SF_(6)and SF_(6)/N_(2)mixture carrier with different mixing ratios is calibrated.Compared with the simulatedσvalues,the influence of carrier gas on the broadening of spectral profile is discussed.The variation of absorption cross sectionσwith different carrier gas mixing ratios is studied as well,so that the calculation of the concentration in the carrier gas of any mixing ratio is possible.Thus,the application of CRDS in trace component detection of gas insulated electrical equipment is promising.展开更多
Ion-induced charge-transfer states in conjugated polyelectrolytes were experimentally investigated by Justin M.Hodgkiss and his co-workers [J Am Chem Soc,2009,131(25):8913].In this work,charged and neutral conjugated ...Ion-induced charge-transfer states in conjugated polyelectrolytes were experimentally investigated by Justin M.Hodgkiss and his co-workers [J Am Chem Soc,2009,131(25):8913].In this work,charged and neutral conjugated polyelectrolytes were further studied with quantum chemistry methods.The calculation result shows that the absorption spectra are roughly in visible and ultraviolet light regions,and the two absorption peaks are located in the wavelength span 300-400 nm for charged polyelectrolytes.However,in neutral conjugated polyelectrolytes,the peaks of the absorption spectra showed a blue shift compared with those of the charged polyelectrolytes.Charge transfer (CT) properties of the studied compounds were also investigated with both the three-dimensional real-space analysis method of transition and charge difference densities,and the two-dimensional real-space analysis method of transition density matrices based on the simulated absorption spectra.The calculation results revealed the charge transfer in conjugated polyelectrolytes on the excitation states.展开更多
文摘Noble metal cocatalysts have shown great potential in boosting the performance of CdS in photocatalytic water splitting.However,the mechanism and kinetics of electron transfer in noble-metal-decorated CdS during practical hydrogen evolution is not clearly elucidated.Herein,Pt-nanoparticle-decorated CdS nanorods(CdS/Pt)are utilized as the model system to analyze the electron transfer kinetics in CdS/Pt heterojunction.Through femtosecond transient absorption spectroscopy,three dominating exciton quenching pathways are observed and assigned to the trapping of photogenerated electrons at shallow states,recombination of free electrons and trapped holes,and radiative recombination of locally photogenerated electron-hole pairs.The introduction of Pt cocatalyst can release the electrons trapped at the shallow states and construct an ultrafast electron transfer tunnel at the CdS/Pt interface.When CdS/Pt is dispersed in acetonitrile,the lifetime and rate for interfacial electron transfer are respectively calculated to be~5.5 ps and~3.5×10^(10) s^(−1).The CdS/Pt is again dispersed in water to simulate photocatalytic water splitting.The lifetime of the interfacial electron transfer decreases to~5.1 ps and the electron transfer rate increases to~4.9×10^(10) s^(−1),confirming that Pt nanoparticles serve as the main active sites of hydrogen evolution.This work reveals the role of Pt cocatalysts in enhancing the photocatalytic performance of CdS from the perspective of electron transfer kinetics.
基金supported by the National Natural Science Foundation of China (Grant Nos.60772058 and 61271406)
文摘Underwater imaging posts a challenge due to the degradation by the absorption and scattering occurred during light propagation as well as poor lighting conditions in water medium Although image filtering techniques are utilized to improve image quality effectively, problems of the distortion of image details and the bias of color correction still exist in output images due to the complexity of image texture distribution. This paper proposes a new underwater image enhancement method based on image struc- tural decomposition. By introducing a curvature factor into the Mumford_Shah_G decomposition algorithm, image details and struc- ture components are better preserved without the gradient effect. Thus, histogram equalization and Retinex algorithms are applied in the decomposed structure component for global image enhancement and non-uniform brightness correction for gray level and the color images, then the optical absorption spectrum in water medium is incorporate to improve the color correction. Finally, the en- hauced structure and preserved detail component are re.composed to generate the output. Experiments with real underwater images verify the image improvement by the proposed method in image contrast, brightness and color fidelity.
基金supported in part by the National Key R&D Program of China(No.2021YFF0603100)in part by the Leading Innovation and Entrepreneurship Team in Zhejiang Province(No.2019R01014)
文摘H_(2)S is one of the most important characteristic decomposition components of SF_(6)insulated gas,and the detection of trace H_(2)S is significant for early fault diagnosis of gas insulated electrical equipment.A 1578 nm wavelength distributed feedback diode laser(DFB-DL)based cavity ring-down spectroscopy(CRDS)experimental platform is developed to monitor the concentrations of H_(2)S in SF_(6)and SF_(6)/N_(2)mixture carrier gas.The detection sensitivity is higher than 1×10^(-6).The absorption cross section parameterσis vital for calculating the concentration.With repeated experiments using standard gas samples,parameterσof H_(2)S in pure SF_(6)and SF_(6)/N_(2)mixture carrier with different mixing ratios is calibrated.Compared with the simulatedσvalues,the influence of carrier gas on the broadening of spectral profile is discussed.The variation of absorption cross sectionσwith different carrier gas mixing ratios is studied as well,so that the calculation of the concentration in the carrier gas of any mixing ratio is possible.Thus,the application of CRDS in trace component detection of gas insulated electrical equipment is promising.
基金supported by the National Natural Science Foundation of China (Grant Nos.11074210 and 20703032)the National Basic Research Project of China (Grant No.2009CB930703)
文摘Ion-induced charge-transfer states in conjugated polyelectrolytes were experimentally investigated by Justin M.Hodgkiss and his co-workers [J Am Chem Soc,2009,131(25):8913].In this work,charged and neutral conjugated polyelectrolytes were further studied with quantum chemistry methods.The calculation result shows that the absorption spectra are roughly in visible and ultraviolet light regions,and the two absorption peaks are located in the wavelength span 300-400 nm for charged polyelectrolytes.However,in neutral conjugated polyelectrolytes,the peaks of the absorption spectra showed a blue shift compared with those of the charged polyelectrolytes.Charge transfer (CT) properties of the studied compounds were also investigated with both the three-dimensional real-space analysis method of transition and charge difference densities,and the two-dimensional real-space analysis method of transition density matrices based on the simulated absorption spectra.The calculation results revealed the charge transfer in conjugated polyelectrolytes on the excitation states.