We present theoretical investigations on structure-property correlations in fluorenone (FLO) and benzothiadiazole (BT) substituted oligofluorenes (OFLs) derived mainly from the chain morphology, thermal vibratio...We present theoretical investigations on structure-property correlations in fluorenone (FLO) and benzothiadiazole (BT) substituted oligofluorenes (OFLs) derived mainly from the chain morphology, thermal vibration and conjugated extent. Both the vertical absorptions and the vibrationally-resolved absorption and fluorescence spectra have been calculated by the com- bination of ab initio and time-dependent density functional theory. By properly taking into account of the anharmonic torsion potentials in the OFLs, we have reasonably reproduced the experimentally observed spectroscopic features. Both FLO and BT on-chain chemical defects acting as charge-trapping sites for singlet excitations, are responsible for long wave absorption and emission species, and thus alter the blue light-emitting properties of OFLs. As temperature decreases, the electronic spectral lineshapes of FLO-substituted oligomers become more structured. The lineshapes of BT-substituted oligomers are always smooth and featureless because of less low collective modes resonance. A more gentle excited poten-tial energy surface of BT-mixed molecules can enhance electronic delocalization and achieve bigger red shifts.展开更多
2,7′-(Ethylene)-bis-8-hydroxyquinoline was optimized with DFT/B3LYP and ab initio HF methods, so ion- ization potential and electron affinity could be determined. Absorption spectrum was calculated by ZINDO and TD-...2,7′-(Ethylene)-bis-8-hydroxyquinoline was optimized with DFT/B3LYP and ab initio HF methods, so ion- ization potential and electron affinity could be determined. Absorption spectrum was calculated by ZINDO and TD-DFT. CIS method was used to calculate the S1 excited states of the compound and afterwards the emission spectrum was computed. When the solvent effect was taken into account, the computed results show encouraging agreement with known experimental data. The results of analyzing the relationship between the energies and absorption spectra indicate that the ability to transporting electrons is strengthened compared with 8-hydroxyquinoline and that absorption and emission spectra are red-shifted. The intramoleeular reor- ganization energy of tris(2,7′-(ethylene)-bis-8-hydroxyquinoline)-aluminum implies its electron transporting property is worse than tris(8-hydroxyquinoline)-aluminum. The predicted maximum emission wavelength is red-shifted compared with tris(8-hydroxyquinoline)-aluminum.展开更多
文摘We present theoretical investigations on structure-property correlations in fluorenone (FLO) and benzothiadiazole (BT) substituted oligofluorenes (OFLs) derived mainly from the chain morphology, thermal vibration and conjugated extent. Both the vertical absorptions and the vibrationally-resolved absorption and fluorescence spectra have been calculated by the com- bination of ab initio and time-dependent density functional theory. By properly taking into account of the anharmonic torsion potentials in the OFLs, we have reasonably reproduced the experimentally observed spectroscopic features. Both FLO and BT on-chain chemical defects acting as charge-trapping sites for singlet excitations, are responsible for long wave absorption and emission species, and thus alter the blue light-emitting properties of OFLs. As temperature decreases, the electronic spectral lineshapes of FLO-substituted oligomers become more structured. The lineshapes of BT-substituted oligomers are always smooth and featureless because of less low collective modes resonance. A more gentle excited poten-tial energy surface of BT-mixed molecules can enhance electronic delocalization and achieve bigger red shifts.
文摘2,7′-(Ethylene)-bis-8-hydroxyquinoline was optimized with DFT/B3LYP and ab initio HF methods, so ion- ization potential and electron affinity could be determined. Absorption spectrum was calculated by ZINDO and TD-DFT. CIS method was used to calculate the S1 excited states of the compound and afterwards the emission spectrum was computed. When the solvent effect was taken into account, the computed results show encouraging agreement with known experimental data. The results of analyzing the relationship between the energies and absorption spectra indicate that the ability to transporting electrons is strengthened compared with 8-hydroxyquinoline and that absorption and emission spectra are red-shifted. The intramoleeular reor- ganization energy of tris(2,7′-(ethylene)-bis-8-hydroxyquinoline)-aluminum implies its electron transporting property is worse than tris(8-hydroxyquinoline)-aluminum. The predicted maximum emission wavelength is red-shifted compared with tris(8-hydroxyquinoline)-aluminum.