The stability of porphyra-334 in solutions of different pH values at different temperatures was studied. In high acidic conditions, below pH 3, the absorption maximum, λ max, of porphyra-334 shows hypsochromic shift ...The stability of porphyra-334 in solutions of different pH values at different temperatures was studied. In high acidic conditions, below pH 3, the absorption maximum, λ max, of porphyra-334 shows hypsochromic shift towards lower wavelength and the absorbance also has a light decrease. In high alkaline conditions of over pH 12, the absorbance of porphyra-334 decreases and an unknown compound with a peak maximum at 225 nm appears. The peak height of the unknown compound increases with the decrease of absorbance of porphyra-334. This might be related to the decomposition of porphyra-334. At room temperature, porphyra-334 solutions, except high alkaline solutions, are stable. Increasing the temperature, especially higher than 60℃, promotes the decomposition of porphyra-334 and causes the absorbance decrease both in basic and acidic solutions.展开更多
The relationship between the growth and nutrient uptake by perennial crop such as pepper is poorly understood and improved understanding of such relationship is important for the establishment of rational crop managem...The relationship between the growth and nutrient uptake by perennial crop such as pepper is poorly understood and improved understanding of such relationship is important for the establishment of rational crop management practices. In order to characterize the growth performance and quantify the nutrient removed, this study presents results of three consecutive cropping years, fertilized with 1, 2 and 3 ton ha1 of NPK fertilizer respectively. Plant biomass accumulated was evaluated every two months, separating plant into stems, branches, leaves, berries, fruit spikes and flowers. Total biomass of pepper increased linearly and reach maximum at 22 months after planting. Thereafter, a decrease in dry matter was observed due to fruit export and fallen leaves at harvest. However, at the 28 months of planting, the biomass of pepper vine showing some increasing trend indicating the vegetative growth was reassumed for the next flowering. At 30 months, the pepper had removed 293.08 kg of nitrogen, 46.41 kg of phosphorus, 264.95 kg of potassium, 35.4 kg of magnesium and 74.82 kg of calcium. Based on data obtained, the nutrient uptake rates were lower than nutrient applied suggested that fertilizer had been overused for pepper production. In light of these results obtained, the optimum fertilizer dosage would be 62-10-62-6-18 kg/ha, 237-22-246-22-65 kg/ha and 390-62-352-47-100 kg/ha of N-P-K-Mg-Ca for the year 1, year 2 and year 3 of cropping year.展开更多
Soil, water, sediments and air are frequently contaminated with heavy metals. In Saudi Arabia, heavy metals contamination may result from petroleum and mining operations, refining ores, sludge, waste treatment, electr...Soil, water, sediments and air are frequently contaminated with heavy metals. In Saudi Arabia, heavy metals contamination may result from petroleum and mining operations, refining ores, sludge, waste treatment, electrical equipment, paints, alloys, pesticides, batteries and fuel transportation. Microbial processes lead to appreciable and even complete remediation of heavy metals contaminated environments. The chief ways, by which such remediation may be accomplished, include biosorption, bioaugmentation, bioventing, biostimulation, bioaccumulation, biosolubilization, bioreduction, bioprecipitation, mineralization and methylation. Other technologies and methods are fully developed and now are being used in practice, such as heavy metals nanotechnology bioremediation. An area of fungal biotechnology currently in vogue is the use of fungal biornass to absorb metal ions from contaminated solutions. Such biological approaches of metal ions recovery can be used to clean up polluted effluents or to recover precious metal ions from solutions. The present review provides information on fungal bioremediation of heavy metal contamination for use in future studies in Saudi Arabia as well as in the Arabian Gulf Region.展开更多
Transparent metal oxide nanowires (NWs) have attracted intense research interest in recent years. We report here the synthesis of interesting ladder-like metal oxide NWs, including In2O3, SnO2, ZnO, and Ga2O3, via a...Transparent metal oxide nanowires (NWs) have attracted intense research interest in recent years. We report here the synthesis of interesting ladder-like metal oxide NWs, including In2O3, SnO2, ZnO, and Ga2O3, via a facile chemical vapor deposition (CVD) method. Their structural features and growth mechanism are demonstrated in detail by using the ladder-like In2O3 NWs as an example. Single ladder-like NW-based field-effect transistors (FETs) and photodetectors (PDs) of SnO2 were fabricated in order to investigate their electrical transport and light absorption properties. Compared with straight NW-based FETs which operate in an enhancement mode (E-mode), FETs build on ladder-like NWs operate in a depletion mode (D-mode). The ladder-like NWs also give higher carrier concentrations than conventional single nanowires. Finite-difference time-domain (FDTD) simulations have been performed on the ladder-like NWs and the results reveal a great enhancement of light absorption with both transverse-electric (TE) and transverse-magnetic (TM) polarization modes, which is in good agreement with the experimental results.展开更多
We have theoretically investigated two series of cyclometalated Pt(II) complexes, a series [Pt (C, N, N) Cl] and b series [Pt (C, N, Npyrazolyl) Cl]. The geometrical and electronic structures are calculated at t...We have theoretically investigated two series of cyclometalated Pt(II) complexes, a series [Pt (C, N, N) Cl] and b series [Pt (C, N, Npyrazolyl) Cl]. The geometrical and electronic structures are calculated at the ECP60MWB//6-31G*(H, C, Cl, N, S) basis set level using DFT method; one-photon absorption (OPA) properties are calculated by using both TDDFT and ZINDO methods and two-photon absorption (TPA) properties are obtained with the ZINDO/SOS method. The resonance integrals parameters (βsp and βd) for Pt are adjusted to -1 and -28.5 eV, respectively, to make max OPA wavelength calculated by ZINDO closest to the experimental data and TDDFT results. The calculated results indicate the molecule 2b ([Pt (Cnaphthyl, N, Npyrazolyl) Cl]) has the biggest potential as outstanding TPA materials because (i) the TPA properties of b series are more outstanding in IR wavelength range, the molecules in b series have good transparencies and possess 1-pyrazolyl-NH that is also available for another metal coordination (e.g., dimerization) and chemical interactions; (ii) when C is CnaphthyI in the C, N, N ligand of cyclometalated Pt(II) complexes, the molecules have the best conjugation effect and the best TPA properties.展开更多
基金supported by the Natural Science Foundation of Qingdao(No.04-2-JZ-110).
文摘The stability of porphyra-334 in solutions of different pH values at different temperatures was studied. In high acidic conditions, below pH 3, the absorption maximum, λ max, of porphyra-334 shows hypsochromic shift towards lower wavelength and the absorbance also has a light decrease. In high alkaline conditions of over pH 12, the absorbance of porphyra-334 decreases and an unknown compound with a peak maximum at 225 nm appears. The peak height of the unknown compound increases with the decrease of absorbance of porphyra-334. This might be related to the decomposition of porphyra-334. At room temperature, porphyra-334 solutions, except high alkaline solutions, are stable. Increasing the temperature, especially higher than 60℃, promotes the decomposition of porphyra-334 and causes the absorbance decrease both in basic and acidic solutions.
文摘The relationship between the growth and nutrient uptake by perennial crop such as pepper is poorly understood and improved understanding of such relationship is important for the establishment of rational crop management practices. In order to characterize the growth performance and quantify the nutrient removed, this study presents results of three consecutive cropping years, fertilized with 1, 2 and 3 ton ha1 of NPK fertilizer respectively. Plant biomass accumulated was evaluated every two months, separating plant into stems, branches, leaves, berries, fruit spikes and flowers. Total biomass of pepper increased linearly and reach maximum at 22 months after planting. Thereafter, a decrease in dry matter was observed due to fruit export and fallen leaves at harvest. However, at the 28 months of planting, the biomass of pepper vine showing some increasing trend indicating the vegetative growth was reassumed for the next flowering. At 30 months, the pepper had removed 293.08 kg of nitrogen, 46.41 kg of phosphorus, 264.95 kg of potassium, 35.4 kg of magnesium and 74.82 kg of calcium. Based on data obtained, the nutrient uptake rates were lower than nutrient applied suggested that fertilizer had been overused for pepper production. In light of these results obtained, the optimum fertilizer dosage would be 62-10-62-6-18 kg/ha, 237-22-246-22-65 kg/ha and 390-62-352-47-100 kg/ha of N-P-K-Mg-Ca for the year 1, year 2 and year 3 of cropping year.
文摘Soil, water, sediments and air are frequently contaminated with heavy metals. In Saudi Arabia, heavy metals contamination may result from petroleum and mining operations, refining ores, sludge, waste treatment, electrical equipment, paints, alloys, pesticides, batteries and fuel transportation. Microbial processes lead to appreciable and even complete remediation of heavy metals contaminated environments. The chief ways, by which such remediation may be accomplished, include biosorption, bioaugmentation, bioventing, biostimulation, bioaccumulation, biosolubilization, bioreduction, bioprecipitation, mineralization and methylation. Other technologies and methods are fully developed and now are being used in practice, such as heavy metals nanotechnology bioremediation. An area of fungal biotechnology currently in vogue is the use of fungal biornass to absorb metal ions from contaminated solutions. Such biological approaches of metal ions recovery can be used to clean up polluted effluents or to recover precious metal ions from solutions. The present review provides information on fungal bioremediation of heavy metal contamination for use in future studies in Saudi Arabia as well as in the Arabian Gulf Region.
基金This work was supported by the National Natural Science Foundation of China (Nos. 61377033 and 91123008), the 973 Program of China (No. 2011CB933300), and the Program for New Century Excellent Talents of the University in China (Grant No. NCET-11-0179).
文摘Transparent metal oxide nanowires (NWs) have attracted intense research interest in recent years. We report here the synthesis of interesting ladder-like metal oxide NWs, including In2O3, SnO2, ZnO, and Ga2O3, via a facile chemical vapor deposition (CVD) method. Their structural features and growth mechanism are demonstrated in detail by using the ladder-like In2O3 NWs as an example. Single ladder-like NW-based field-effect transistors (FETs) and photodetectors (PDs) of SnO2 were fabricated in order to investigate their electrical transport and light absorption properties. Compared with straight NW-based FETs which operate in an enhancement mode (E-mode), FETs build on ladder-like NWs operate in a depletion mode (D-mode). The ladder-like NWs also give higher carrier concentrations than conventional single nanowires. Finite-difference time-domain (FDTD) simulations have been performed on the ladder-like NWs and the results reveal a great enhancement of light absorption with both transverse-electric (TE) and transverse-magnetic (TM) polarization modes, which is in good agreement with the experimental results.
基金supported by the Youth Scholar Backbone Supporting Plan Project for General Universities of Heilongjiang Province (1155G22)China Postdoctoral Science Foundation (20100481018)+2 种基金Heilongjiang Postdoctoral Financial Assistance (LBH-Z09096)Youth Science Foundation of Harbin University of Science and Technology (2009YF020)National Natural Science Foundation of China (20973078)
文摘We have theoretically investigated two series of cyclometalated Pt(II) complexes, a series [Pt (C, N, N) Cl] and b series [Pt (C, N, Npyrazolyl) Cl]. The geometrical and electronic structures are calculated at the ECP60MWB//6-31G*(H, C, Cl, N, S) basis set level using DFT method; one-photon absorption (OPA) properties are calculated by using both TDDFT and ZINDO methods and two-photon absorption (TPA) properties are obtained with the ZINDO/SOS method. The resonance integrals parameters (βsp and βd) for Pt are adjusted to -1 and -28.5 eV, respectively, to make max OPA wavelength calculated by ZINDO closest to the experimental data and TDDFT results. The calculated results indicate the molecule 2b ([Pt (Cnaphthyl, N, Npyrazolyl) Cl]) has the biggest potential as outstanding TPA materials because (i) the TPA properties of b series are more outstanding in IR wavelength range, the molecules in b series have good transparencies and possess 1-pyrazolyl-NH that is also available for another metal coordination (e.g., dimerization) and chemical interactions; (ii) when C is CnaphthyI in the C, N, N ligand of cyclometalated Pt(II) complexes, the molecules have the best conjugation effect and the best TPA properties.