Among the many approaches for studying the net primary productivity (NPP), a new method by using remote sensing was introduced in this paper. With spectral information source (the visible band, near infrared band and ...Among the many approaches for studying the net primary productivity (NPP), a new method by using remote sensing was introduced in this paper. With spectral information source (the visible band, near infrared band and thermal infrared band) of NOAA-AVHRR, we can get the relative index and parameters, which can be used for estimating NPP of terrestrial vegetation. By means of remote sensing, the estimation of biomass and NPP is mainly based on the models of light energy utilization. In other words, the biomass and NPP can be calculated from the relation among NPP, absorbed photosynthetical active radiation (APAR) and the rate (epsilon) of transformation of APAR to organic matter, thus: NPP = ( FPAR x PAR) x [epsilon * x sigma (T) x sigma (E) x sigma (S) x (1 - Y-m) x (1 - Y-g)]. Based upon remote sensing ( RS) and geographic information system (GIS), the NPP of terrestrial vegetation in China in every ten days was calculated, and the annual NPP was integrated. The result showed that the total NPP of terrestrial vegetation in China was 6.13 x 10(9) t C . a(-1) in 1990 and the maximum NPP was 1 812.9 g C/m(2). According to this result, the spatio-temporal distribution of NPP was analyzed. Comparing to the statistical models, the RS model, using area object other than point one, can better reflect the distribution of NPP, and match the geographic distribution of vegetation in China.展开更多
Aims Populus deltoides and P.euramericana are widely used in China as major forestry species.At present,little is known about their responses to nitrogen(N)deficiency when grown in monocultures or mixed plantations.Th...Aims Populus deltoides and P.euramericana are widely used in China as major forestry species.At present,little is known about their responses to nitrogen(N)deficiency when grown in monocultures or mixed plantations.The aim of this investigation was to analyze the growth,and morphological and physiological responses of P.deltoides and P.euramericana to different N levels under competition conditions.Methods We employed two Populus species(P.deltoides and P.euramericana)to discover how N deficiency affects plant traits under different competition types(P.deltoides×P.deltoides,intraspecific competition;P.euramericana×P.euramericana,intraspecific competition;P.deltoides×P.euramericana,interspecific competition).Potted seedlings were exposed to two N levels(normal N,N deficiency),and nitrogen-and competition-driven differences in growth,morphology and physiology were examined.Important Findings Under normal N conditions,interspecific competition significantly decreased the total root weight,root mass fraction(RMF),root–shoot ratio(R/S)and carbon/nitrogen ratio(C/N),and increased the leaf dry weight,leaf mass fraction and total leaf area of P.euramericana compared with intraspecific competition.The same conditions significantly affected the growth and morphological variables of P.deltoides,except for the dry weight of fine roots,R/S,specific leaf area,RMF,total nitrogen content and C/N compared with intraspecific competition.In addition,chlorophyll a(Chla),total chlorophyll(Tchl),carotenoid contents(Caro)and the carbon isotope composition(δ13C)of P.deltoides were significantly lower in interspecific competition than in intraspecific competition,but no difference was detected in P.euramericana.The effects of N deficiency on P.deltoides under intraspecific competition were stronger than under interspecific competition.In contrast,the effects of N deficiency on P.euramericana between intraspecific and interspecific competition were not significantly different.These results suggest that under normal N condition,P.deltoides is expected to gain an advantage in monocultures rather than in mixtures with P.euramericana.Under N deficiency,the growth performance of P.euramericana was more stable than that of P.deltoides under both cultivation modes.展开更多
Alloyed nanoparticles with core-shell structures provide a favorable model to modulate interfacial interaction and surface structures at the atomic level,which is important for designing electrocatalysts with high act...Alloyed nanoparticles with core-shell structures provide a favorable model to modulate interfacial interaction and surface structures at the atomic level,which is important for designing electrocatalysts with high activity and durability.Herein,core-shell structured Pd3M@Pt/C nanoparticles with binary PdM alloy cores(M=Fe,Ni,and Co)and a monolayer Pt shell were successfully synthesized with diverse interfaces.Among these,Pd3Fe@Pt/C exhibited the best oxygen reduction reaction catalytic performance,roughly 5.4 times more than that of the commercial Pt/C catalyst used as reference.The significantly enhanced activity is attributed to the combined effects of strain engineering,interfacial electron transfer,and improved Pt utilization.Density functional theory simulations and extended X-ray absorption fine structure analysis revealed that engineering the alloy core with moderate lattice mismatch and alloy composition(Pd3Fe)optimizes the surface oxygen adsorption energy,thereby rendering excellent electrocatalytic activity.Future researches may use this study as a guide on the construction of highly effective core-shell electrocatalysts for various energy conversions and other applications.展开更多
文摘Among the many approaches for studying the net primary productivity (NPP), a new method by using remote sensing was introduced in this paper. With spectral information source (the visible band, near infrared band and thermal infrared band) of NOAA-AVHRR, we can get the relative index and parameters, which can be used for estimating NPP of terrestrial vegetation. By means of remote sensing, the estimation of biomass and NPP is mainly based on the models of light energy utilization. In other words, the biomass and NPP can be calculated from the relation among NPP, absorbed photosynthetical active radiation (APAR) and the rate (epsilon) of transformation of APAR to organic matter, thus: NPP = ( FPAR x PAR) x [epsilon * x sigma (T) x sigma (E) x sigma (S) x (1 - Y-m) x (1 - Y-g)]. Based upon remote sensing ( RS) and geographic information system (GIS), the NPP of terrestrial vegetation in China in every ten days was calculated, and the annual NPP was integrated. The result showed that the total NPP of terrestrial vegetation in China was 6.13 x 10(9) t C . a(-1) in 1990 and the maximum NPP was 1 812.9 g C/m(2). According to this result, the spatio-temporal distribution of NPP was analyzed. Comparing to the statistical models, the RS model, using area object other than point one, can better reflect the distribution of NPP, and match the geographic distribution of vegetation in China.
基金supported by the Key laboratory project of the Ecological Security and Protection Key Laboratory of Sichuan Province(ESP201501)the Talent Program of the Hangzhou Normal University(2016QDL020).
文摘Aims Populus deltoides and P.euramericana are widely used in China as major forestry species.At present,little is known about their responses to nitrogen(N)deficiency when grown in monocultures or mixed plantations.The aim of this investigation was to analyze the growth,and morphological and physiological responses of P.deltoides and P.euramericana to different N levels under competition conditions.Methods We employed two Populus species(P.deltoides and P.euramericana)to discover how N deficiency affects plant traits under different competition types(P.deltoides×P.deltoides,intraspecific competition;P.euramericana×P.euramericana,intraspecific competition;P.deltoides×P.euramericana,interspecific competition).Potted seedlings were exposed to two N levels(normal N,N deficiency),and nitrogen-and competition-driven differences in growth,morphology and physiology were examined.Important Findings Under normal N conditions,interspecific competition significantly decreased the total root weight,root mass fraction(RMF),root–shoot ratio(R/S)and carbon/nitrogen ratio(C/N),and increased the leaf dry weight,leaf mass fraction and total leaf area of P.euramericana compared with intraspecific competition.The same conditions significantly affected the growth and morphological variables of P.deltoides,except for the dry weight of fine roots,R/S,specific leaf area,RMF,total nitrogen content and C/N compared with intraspecific competition.In addition,chlorophyll a(Chla),total chlorophyll(Tchl),carotenoid contents(Caro)and the carbon isotope composition(δ13C)of P.deltoides were significantly lower in interspecific competition than in intraspecific competition,but no difference was detected in P.euramericana.The effects of N deficiency on P.deltoides under intraspecific competition were stronger than under interspecific competition.In contrast,the effects of N deficiency on P.euramericana between intraspecific and interspecific competition were not significantly different.These results suggest that under normal N condition,P.deltoides is expected to gain an advantage in monocultures rather than in mixtures with P.euramericana.Under N deficiency,the growth performance of P.euramericana was more stable than that of P.deltoides under both cultivation modes.
基金the Natural Science Foundation of Hainan Province(2019RC007)the National Natural Science Foundation of China(21805104,21606050,21905056,21905045,and U1801257)+3 种基金the Natural Science Foundation of Guangdong Province(2018A0303130239,2018A0303130223)Pearl River Science and Technology New Star Project(201806010039)the Start-up Research Foundation of Hainan University(KYQD(ZR)1908)Research Fund Program of Key Laboratory of Fuel Cell Technology of Guangdong Province。
文摘Alloyed nanoparticles with core-shell structures provide a favorable model to modulate interfacial interaction and surface structures at the atomic level,which is important for designing electrocatalysts with high activity and durability.Herein,core-shell structured Pd3M@Pt/C nanoparticles with binary PdM alloy cores(M=Fe,Ni,and Co)and a monolayer Pt shell were successfully synthesized with diverse interfaces.Among these,Pd3Fe@Pt/C exhibited the best oxygen reduction reaction catalytic performance,roughly 5.4 times more than that of the commercial Pt/C catalyst used as reference.The significantly enhanced activity is attributed to the combined effects of strain engineering,interfacial electron transfer,and improved Pt utilization.Density functional theory simulations and extended X-ray absorption fine structure analysis revealed that engineering the alloy core with moderate lattice mismatch and alloy composition(Pd3Fe)optimizes the surface oxygen adsorption energy,thereby rendering excellent electrocatalytic activity.Future researches may use this study as a guide on the construction of highly effective core-shell electrocatalysts for various energy conversions and other applications.