The absorption effect of actual subsurface media can weaken wavefield energy, decrease the dominating frequency, and further lead to reduced resolution. In migration, some actions can be taken to compensate for the ab...The absorption effect of actual subsurface media can weaken wavefield energy, decrease the dominating frequency, and further lead to reduced resolution. In migration, some actions can be taken to compensate for the absorption effect and enhance the resolution. In this paper, we derive a one-way wave equation with an attenuation term based on the time- space domain high angle one-way wave equation. A complicated geological model is then designed and synthetic shot gathers are simulated with acoustic wave equations without and with an absorbing term. The derived one-way wave equation is applied to the migration of the synthetic gathers without and with attenuation compensation for the simulated shot gathers. Three migration profiles are obtained. The first and second profiles are from the shot gathers without and with attenuation using the migration method without compensation, the third one is from the shot gathers with attenuation using the migration method with compensation. The first and third profiles are almost the same, and the second profile is different from the others below the absorptive layers. The amplitudes of the interfaces below the absorptive layers are weak because of their absorption. This method is also applied to field data. It is concluded from the migration examples that the migration method discussed in this paper is feasible.展开更多
For an energy transfer network, the irreversible depletion of excited electron energy occurs through either an efficient flow into an outer energy sink or an inefficient decay. With a small decay rate, the energy tran...For an energy transfer network, the irreversible depletion of excited electron energy occurs through either an efficient flow into an outer energy sink or an inefficient decay. With a small decay rate, the energy transfer efficiency is quantitatively reflected by the average life time of excitation energy before being trapped in the sink where the decay process is omitted. In the weak dissipation regime, the trapping time is analyzed within the exciton population subspace based on the secular Redfield equation. The requirement of the noise-enhanced energy transfer is obtained, where the trapping time follows an exact or approximate 1/F- scaling of the dissipation strength F. On the opposite side, optimal initial system states are conceptually constructed to suppress the 1/F-scaling of the trapping time and maximize the coherent transfer efficiency. Our theory is numerically testified in four models, including a biased two-site system, a symmetric three-site branching system, a homogeneous one- dimensional chain, and an 8-chromophore FMO protein complex.展开更多
基金supported in part by the National Natural Science Foundation of China(No.40974069,41174119)the Research of Novel Method and Technology of Geophysical Prospecting,CNPC(No.2011A-3602)the National Major Science and Technology Program(No.2011ZX05010,2011ZX05024)
文摘The absorption effect of actual subsurface media can weaken wavefield energy, decrease the dominating frequency, and further lead to reduced resolution. In migration, some actions can be taken to compensate for the absorption effect and enhance the resolution. In this paper, we derive a one-way wave equation with an attenuation term based on the time- space domain high angle one-way wave equation. A complicated geological model is then designed and synthetic shot gathers are simulated with acoustic wave equations without and with an absorbing term. The derived one-way wave equation is applied to the migration of the synthetic gathers without and with attenuation compensation for the simulated shot gathers. Three migration profiles are obtained. The first and second profiles are from the shot gathers without and with attenuation using the migration method without compensation, the third one is from the shot gathers with attenuation using the migration method with compensation. The first and third profiles are almost the same, and the second profile is different from the others below the absorptive layers. The amplitudes of the interfaces below the absorptive layers are weak because of their absorption. This method is also applied to field data. It is concluded from the migration examples that the migration method discussed in this paper is feasible.
基金supported by the National Natural Science Foundation of China(No.21573195)the Ministry of Science and Technology of China(MOST-2014CB921203)
文摘For an energy transfer network, the irreversible depletion of excited electron energy occurs through either an efficient flow into an outer energy sink or an inefficient decay. With a small decay rate, the energy transfer efficiency is quantitatively reflected by the average life time of excitation energy before being trapped in the sink where the decay process is omitted. In the weak dissipation regime, the trapping time is analyzed within the exciton population subspace based on the secular Redfield equation. The requirement of the noise-enhanced energy transfer is obtained, where the trapping time follows an exact or approximate 1/F- scaling of the dissipation strength F. On the opposite side, optimal initial system states are conceptually constructed to suppress the 1/F-scaling of the trapping time and maximize the coherent transfer efficiency. Our theory is numerically testified in four models, including a biased two-site system, a symmetric three-site branching system, a homogeneous one- dimensional chain, and an 8-chromophore FMO protein complex.