This article outlines the theoretical and experimental performance studies of a cylindro-parabolic solar collector. The theoretical study consists on the establishment, through mass and energy balances, of a mathemati...This article outlines the theoretical and experimental performance studies of a cylindro-parabolic solar collector. The theoretical study consists on the establishment, through mass and energy balances, of a mathematical model to control the exiting temperature of the heating fluid as well as the temperatures of the absorber and the glass. The experimental level investigates the influence of the solar absorber tube diameter on the performances of the driving device. Several experiments were made in order to know the possibility to reach temperatures being able to ensure for example the ammonia vaporization in the generator of a solar absorption refrigeration system. These experiments were carried out under various operating and climatic conditions. The results are presented and discussed.展开更多
A dual-gas sensor system is developed for CO and CO_2 detection using a single broadband light source, pyroelectric detectors and time-division multiplexing(TDM) technique. A stepper motor based rotating system and a ...A dual-gas sensor system is developed for CO and CO_2 detection using a single broadband light source, pyroelectric detectors and time-division multiplexing(TDM) technique. A stepper motor based rotating system and a single-reflection spherical optical mirror are designed and adopted for realizing and enhancing dual-gas detection. Detailed measurements under static detection mode(without rotation) and dynamic mode(with rotation) are performed to study the performance of the sensor system for the two gas samples. The detection period is 7.9 s in one round of detection by scanning the two detectors. Based on an Allan deviation analysis, the 1σ detection limits under static operation are 3.0 parts per million(ppm) in volume and 2.6 ppm for CO and CO_2, respectively, and those under dynamic operation are 9.4 ppm and 10.8 ppm for CO and CO_2, respectively. The reported sensor has potential applications in various fields requiring CO and CO_2 detection such as in the coal mine.展开更多
文摘This article outlines the theoretical and experimental performance studies of a cylindro-parabolic solar collector. The theoretical study consists on the establishment, through mass and energy balances, of a mathematical model to control the exiting temperature of the heating fluid as well as the temperatures of the absorber and the glass. The experimental level investigates the influence of the solar absorber tube diameter on the performances of the driving device. Several experiments were made in order to know the possibility to reach temperatures being able to ensure for example the ammonia vaporization in the generator of a solar absorption refrigeration system. These experiments were carried out under various operating and climatic conditions. The results are presented and discussed.
基金supported by the National Key R&D Program of China(Nos.2016YFD0700101 and 2016YFC0303902)the National Natural Science Foundation of China(Nos.61775079,61627823 and 61307124)+3 种基金the Science and Technology Planning Project of Guangdong Province,China(No.2017A020216011)the Science and Technology Development Program of Jilin Province,China(No.20140307014SF)the Industrial Innovation Program of Jilin Province,China(No.2017C027)Changchun Municipal Science and Technology Bureau,China(No.14KG022)
文摘A dual-gas sensor system is developed for CO and CO_2 detection using a single broadband light source, pyroelectric detectors and time-division multiplexing(TDM) technique. A stepper motor based rotating system and a single-reflection spherical optical mirror are designed and adopted for realizing and enhancing dual-gas detection. Detailed measurements under static detection mode(without rotation) and dynamic mode(with rotation) are performed to study the performance of the sensor system for the two gas samples. The detection period is 7.9 s in one round of detection by scanning the two detectors. Based on an Allan deviation analysis, the 1σ detection limits under static operation are 3.0 parts per million(ppm) in volume and 2.6 ppm for CO and CO_2, respectively, and those under dynamic operation are 9.4 ppm and 10.8 ppm for CO and CO_2, respectively. The reported sensor has potential applications in various fields requiring CO and CO_2 detection such as in the coal mine.