Based on the Danckwerts surface renewal model, a simple explicit expression of the enhancement factor in ozone absorption with a first order ozone self-decomposition and parallel second order ozonation reactions has b...Based on the Danckwerts surface renewal model, a simple explicit expression of the enhancement factor in ozone absorption with a first order ozone self-decomposition and parallel second order ozonation reactions has been derived. The results are compared with our previous work based on the film theory. The 2,4-dichlorophenol destruction rate by ozonation is predicted using the enhancement factor model in this paper.展开更多
For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass t...For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass transfer coefficient during absorption and both methods give almost the same mass transfer coefficient.While for chemical absorption with ozone decomposition reaction,the common linear least square fitting method is not applicable for the evaluation of ozone mass transfer coefficient due to the difficulty of model linearization for describing ozone concentration dissolved in water.The nonlinear Simplex method obtains the mass transfer coefficient by minimizing the sum of the differences between the simulated and experimental ozone concentration during the whole absorption process,without the limitation of linear relationship between the dissolved ozone concentration and absorption time during the initial stage of absorption.Comparison of the ozone concentration profiles between the simulation and experimental data demonstrates that Simplex method may determine ozone mass transfer coefficient during absorption in an accurate and high efficiency way with wide applicability.展开更多
Ammonia in wastewater is a major pollutant produced in industrial and agricultural wastewaters. Ammonia is often removed by conventional technologies such as pack tower aeration, biological treatment or adsorption as ...Ammonia in wastewater is a major pollutant produced in industrial and agricultural wastewaters. Ammonia is often removed by conventional technologies such as pack tower aeration, biological treatment or adsorption as ammonium ion onto zeolites. In many cases, conventional methods are very costly and inefficient, and therefore there is a need for an alternative separation technique for more efficient removal of ammonia from wastewaters. The aim of this study is to investigate the performance of combination of ozonation and absorption through membrane processes to remove ammonia from wastewater using NHSW (natural hot spring water) as absorbent. Experimental results show that hollow fiber membrane contactor has potential application for ammonia removal from wastewater. Operating variables such as time and pH of absorbent solution are found to remarkably influence the removal process efficiency.. Based on experimental results ozonation can improve ammonia removal efficiency through hollow fiber membrane contactor. Ammonia removal efficiencies and overall mass transfer coefficients increase with decreasing pH of absorbent solution.展开更多
基金Supported by the China Scholarship Council and Guangdong Provincial Natural Science Foundation of China(No.950215).
文摘Based on the Danckwerts surface renewal model, a simple explicit expression of the enhancement factor in ozone absorption with a first order ozone self-decomposition and parallel second order ozonation reactions has been derived. The results are compared with our previous work based on the film theory. The 2,4-dichlorophenol destruction rate by ozonation is predicted using the enhancement factor model in this paper.
基金Project(2011467001)supported by the Ministry of Environment Protection of ChinaProject(2010DFB94130)supported by the Ministry of Science and Technology of China
文摘For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass transfer coefficient during absorption and both methods give almost the same mass transfer coefficient.While for chemical absorption with ozone decomposition reaction,the common linear least square fitting method is not applicable for the evaluation of ozone mass transfer coefficient due to the difficulty of model linearization for describing ozone concentration dissolved in water.The nonlinear Simplex method obtains the mass transfer coefficient by minimizing the sum of the differences between the simulated and experimental ozone concentration during the whole absorption process,without the limitation of linear relationship between the dissolved ozone concentration and absorption time during the initial stage of absorption.Comparison of the ozone concentration profiles between the simulation and experimental data demonstrates that Simplex method may determine ozone mass transfer coefficient during absorption in an accurate and high efficiency way with wide applicability.
文摘Ammonia in wastewater is a major pollutant produced in industrial and agricultural wastewaters. Ammonia is often removed by conventional technologies such as pack tower aeration, biological treatment or adsorption as ammonium ion onto zeolites. In many cases, conventional methods are very costly and inefficient, and therefore there is a need for an alternative separation technique for more efficient removal of ammonia from wastewaters. The aim of this study is to investigate the performance of combination of ozonation and absorption through membrane processes to remove ammonia from wastewater using NHSW (natural hot spring water) as absorbent. Experimental results show that hollow fiber membrane contactor has potential application for ammonia removal from wastewater. Operating variables such as time and pH of absorbent solution are found to remarkably influence the removal process efficiency.. Based on experimental results ozonation can improve ammonia removal efficiency through hollow fiber membrane contactor. Ammonia removal efficiencies and overall mass transfer coefficients increase with decreasing pH of absorbent solution.