Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is int...Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is intrinsically a point temperature measurement method and noncontact 2D temperature distribution cannot be attained by thermocouples. Recently, as a measurement technique with high sensitivity and high response, laser diagnostics has been developed and applied to the actual engine combustions. With these engineering developments, transient phenomena such as start-ups and load changes in engines have been gradually elucidated in various conditions. In this study, the theoretical and experimental research has been conducted in order to develop the noncontact and fast response 2D temperature and concentration distribution measurement method. The method is based on a Computed Tomography (CT) method using absorption spectra of water vapor at 1388 nm. It has been demonstrated that the method has been successfully applied to engine exhausts to measure 2D temperature distributions.展开更多
The adsorption behavior of multiwalled carbon nanotubes (MWNTs) toward heavy elements has been investigated systemically, and a new method has been developed for the determination of trace elements in water samples ...The adsorption behavior of multiwalled carbon nanotubes (MWNTs) toward heavy elements has been investigated systemically, and a new method has been developed for the determination of trace elements in water samples based on preconcentration with mini-column packed with MWNTs prior to its determination by flame atomic absorption spectrometry (FAAS) The recommended parameters of proposed method influencing the preconcentration of the analytes, such as pH of the sample, sample flow rate and volume, elute solution and interfering ions, have been used. Under the optimized conditions, the calibration graphs were linear with the correlation coefficient range 0.9981-0.9995. According to the results, the metals were found 0.019-0.051, 0.011-0.031, 0.00-0.081, 0.00-0.0002, 0.007-0.0925, 0.00-0.0104 μg/L in water samples for Pb, Mn, Zn, Cd, Fe, Cu respectively. The percentage relative standard deviation (%RSD) for five replicate samples were 〈 5% in all cases. The method has been successfully applied to the determination of trace elements in some environmental samples with satisfactory results.展开更多
Two methods for particulate pigments(i.e.,quantitative filter technique,QFT,and in vivo measurement,InVivo,respectively)and two methods for dissolved pigments(i.e.,Acetone Extracts,AceEx,and high-performance liquid ch...Two methods for particulate pigments(i.e.,quantitative filter technique,QFT,and in vivo measurement,InVivo,respectively)and two methods for dissolved pigments(i.e.,Acetone Extracts,AceEx,and high-performance liquid chromatography,HPLC,respectively) were used to obtain the optical absorption coefficient spectra for cultures of four typical algal species.Through normalization and analysis of the spectra,it is shown that(1) the four methods are able to measure optical absorption spectra of particulate and/or dissolved pigments;(2)that the optical absorption spectra of particulate and dissolved pigments were consistent in terms of the peak position in the blue wavelength,and the difference of the peak position in the near infrared wavelength was ~10nm between each other;and(3)that the leveling effect of the absorption spectra of particulate pigments was significant.These four methods can all effectively measure the absorption coefficients of phytoplankton pigments,while each one has its unique advantages in different applications.Therefore,appropriate method should be carefully selected for various application due to their intrinsic difference.展开更多
In recent years, tighter regulation has been already enforced on harmful substances such as NOx, CO, and particles. Considering the above situation, it is important to monitor controlling factors of engine systems in ...In recent years, tighter regulation has been already enforced on harmful substances such as NOx, CO, and particles. Considering the above situation, it is important to monitor controlling factors of engine systems in order to improve efficiencies of their operations. As to car engines, an increasing concern in environmental issues such as air pollution, global warming and petroleum depletion has helped drive researches into various ways. Laser diagnostics has been applied to measure species concentration in the actual industrial fields. However there are several challenges to proceed in applying laser diagnostics to practical application. Especially stability of the measurement system is one of the most difficult issues. The purpose of this research is the development of a prompt measurement technique which can be applicable to various engine conditions. The Tunable Diode Laser Absorption Spectroscopy (TDLAS) using the hollow fiber has been developed to satisfy above requirements. By using a hollow fiber, misalignment of an optical axis and vulnerability of measurement environment such as vibration can be greatly reduced with sensitive and fast response features. It was demonstrated that this method can be applicable to measure gas compositions in engine exhaust with a range of millisecond response time. A sensitive method using tunable UV diode laser absorption spectroscopy was also discussed to detect NOx in exhausts.展开更多
文摘Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is intrinsically a point temperature measurement method and noncontact 2D temperature distribution cannot be attained by thermocouples. Recently, as a measurement technique with high sensitivity and high response, laser diagnostics has been developed and applied to the actual engine combustions. With these engineering developments, transient phenomena such as start-ups and load changes in engines have been gradually elucidated in various conditions. In this study, the theoretical and experimental research has been conducted in order to develop the noncontact and fast response 2D temperature and concentration distribution measurement method. The method is based on a Computed Tomography (CT) method using absorption spectra of water vapor at 1388 nm. It has been demonstrated that the method has been successfully applied to engine exhausts to measure 2D temperature distributions.
文摘The adsorption behavior of multiwalled carbon nanotubes (MWNTs) toward heavy elements has been investigated systemically, and a new method has been developed for the determination of trace elements in water samples based on preconcentration with mini-column packed with MWNTs prior to its determination by flame atomic absorption spectrometry (FAAS) The recommended parameters of proposed method influencing the preconcentration of the analytes, such as pH of the sample, sample flow rate and volume, elute solution and interfering ions, have been used. Under the optimized conditions, the calibration graphs were linear with the correlation coefficient range 0.9981-0.9995. According to the results, the metals were found 0.019-0.051, 0.011-0.031, 0.00-0.081, 0.00-0.0002, 0.007-0.0925, 0.00-0.0104 μg/L in water samples for Pb, Mn, Zn, Cd, Fe, Cu respectively. The percentage relative standard deviation (%RSD) for five replicate samples were 〈 5% in all cases. The method has been successfully applied to the determination of trace elements in some environmental samples with satisfactory results.
基金Supported by the National Natural Science Foundation of China(No.41276184)the Key Laboratory of Marine Remote Sensing and Acoustics(Nanjing University of Information Science and Technology),Jiangsu Province,China(No.KHYS1404)
文摘Two methods for particulate pigments(i.e.,quantitative filter technique,QFT,and in vivo measurement,InVivo,respectively)and two methods for dissolved pigments(i.e.,Acetone Extracts,AceEx,and high-performance liquid chromatography,HPLC,respectively) were used to obtain the optical absorption coefficient spectra for cultures of four typical algal species.Through normalization and analysis of the spectra,it is shown that(1) the four methods are able to measure optical absorption spectra of particulate and/or dissolved pigments;(2)that the optical absorption spectra of particulate and dissolved pigments were consistent in terms of the peak position in the blue wavelength,and the difference of the peak position in the near infrared wavelength was ~10nm between each other;and(3)that the leveling effect of the absorption spectra of particulate pigments was significant.These four methods can all effectively measure the absorption coefficients of phytoplankton pigments,while each one has its unique advantages in different applications.Therefore,appropriate method should be carefully selected for various application due to their intrinsic difference.
文摘In recent years, tighter regulation has been already enforced on harmful substances such as NOx, CO, and particles. Considering the above situation, it is important to monitor controlling factors of engine systems in order to improve efficiencies of their operations. As to car engines, an increasing concern in environmental issues such as air pollution, global warming and petroleum depletion has helped drive researches into various ways. Laser diagnostics has been applied to measure species concentration in the actual industrial fields. However there are several challenges to proceed in applying laser diagnostics to practical application. Especially stability of the measurement system is one of the most difficult issues. The purpose of this research is the development of a prompt measurement technique which can be applicable to various engine conditions. The Tunable Diode Laser Absorption Spectroscopy (TDLAS) using the hollow fiber has been developed to satisfy above requirements. By using a hollow fiber, misalignment of an optical axis and vulnerability of measurement environment such as vibration can be greatly reduced with sensitive and fast response features. It was demonstrated that this method can be applicable to measure gas compositions in engine exhaust with a range of millisecond response time. A sensitive method using tunable UV diode laser absorption spectroscopy was also discussed to detect NOx in exhausts.