Danckwert’s method was used to determine the specific interfacial area, a, and the individual mass transfer coefficient, kL, during absorption of CO2 in a bubble column with an anionic surfactant in the carbonate-bi...Danckwert’s method was used to determine the specific interfacial area, a, and the individual mass transfer coefficient, kL, during absorption of CO2 in a bubble column with an anionic surfactant in the carbonate-bicarbonate buffer solution and NaAsO2 as catalyst, the presence of which decreases the specific interfacial area and the individual mass transfer coefficient. The specific interfacial area and the individual mass transfer coefficient increase with increasing su- perficial gas velocity. The specific interfacial area decreases whereas the individual mass transfer coefficient increases with increasing temperature. The results of experiments were used to determine the dependence of a, kL, and kLa on the surface tension, the temperature of the absorption phase, and the superficial velocity of the gas. The calculated results from the correlation were found to be within 10% deviation from the actual experimental results.展开更多
The buoyancy effect on micro hydrogen jet flames in still air was numerially studied.The results show that when the jet velocity is relatively large(V≥0.2 m/s),the flame height,width and temperature decrease,whereas ...The buoyancy effect on micro hydrogen jet flames in still air was numerially studied.The results show that when the jet velocity is relatively large(V≥0.2 m/s),the flame height,width and temperature decrease,whereas the peak OH mass fraction increases significantly under normal gravity(g=9.8 m/s^2).For a very low jet velocity(e.g.,V=0.1 m/s),both the peak OH mass fraction and flame temperature under g=9.8 m/s^2 are lower than the counterparts under g=0 m/s^2.Analysis reveals that when V≥0.2 m/s,fuel/air mixing will be promoted and combustion will be intensified due to radial flow caused by the buoyancy effect.However,the flame temperature will be slightly decreased owing to the large amount of entrainment of cold air into the reaction zone.For V=0.1 m/s,since the heat release rate is very low,the entrainment of cold air and fuel leakage from the rim of tube exit lead to a significant drop of flame temperature.Meanwhile,the heat loss rate from fuel to inner tube wall is larger under g=9.8 m/s^2 compared to that under g=0 m/s^2.Therefore,the buoyancy effect is overall negative at very low jet velocities.展开更多
The influence of water vapor on silica membrane with pore size of ,-4A has been investigated in terms of adsorption properties and percolation effect at 50 and 90 ℃. Two methods are employed: spectroscopic ellipsome...The influence of water vapor on silica membrane with pore size of ,-4A has been investigated in terms of adsorption properties and percolation effect at 50 and 90 ℃. Two methods are employed: spectroscopic ellipsometry for water vapor adsorption and gas permeation of binary mixture of helium and H2O The adsorption behaviors on the silica membrane comply with the first-order Langmuir isotherm. The investigation demonstrates that helium flux through the silica membrane decreases dramatically in presence of H20 molecules. The transport of gas molecules through such small pores is believed not to be continuous any more, whereas it is reasonably assumed that the gas molecules hop from one occupied site to another unoccupied one under the potential gradient. When the coverage of H20 molecules on the silica surface increases, the dramatic decrease of helium flux could be related to percolation effect, where the adsorbed H20 molecules on the silica surface block the hopping of helium molecules.展开更多
The bleed hole diameter,depth,and boundary layer thickness are key design parameters of a supersonic bleed system.The evolution trend of single-hole bleed flow coefficient with the ratio of boundary layer thickness to...The bleed hole diameter,depth,and boundary layer thickness are key design parameters of a supersonic bleed system.The evolution trend of single-hole bleed flow coefficient with the ratio of boundary layer thickness to bleed hole diameter and the ratio of bleed hole depth to diameter is investigated by numerical simulations under choking and non-choking conditions.The results show that the subsonic leading edge of the circular hole and the subsonic part of the boundary layer are the main factors causing lateral flow of the bleed hole.The effect of diameter on bleed mass flow rate is due to the viscous effect which reduces the effective diameter.The larger the ratio of displacement thickness to bleed hole diameter,the more obvious the viscous effect is.The depth affects bleed flow rate by changing the opening and closing states of the separation zone.When a certain depth is reached,the development of the boundary layer reduces the effective captured stream tube and thus reduces the bleed mass flow rate.The main objective of the study is to obtain the physical mechanism of the bleed hole size parameters affecting the bleed mass flow rate,and to provide theoretical guidance for the selection of the size of bleed holes in the design of a porous arrays bleed system in hypersonic inlets.展开更多
文摘Danckwert’s method was used to determine the specific interfacial area, a, and the individual mass transfer coefficient, kL, during absorption of CO2 in a bubble column with an anionic surfactant in the carbonate-bicarbonate buffer solution and NaAsO2 as catalyst, the presence of which decreases the specific interfacial area and the individual mass transfer coefficient. The specific interfacial area and the individual mass transfer coefficient increase with increasing su- perficial gas velocity. The specific interfacial area decreases whereas the individual mass transfer coefficient increases with increasing temperature. The results of experiments were used to determine the dependence of a, kL, and kLa on the surface tension, the temperature of the absorption phase, and the superficial velocity of the gas. The calculated results from the correlation were found to be within 10% deviation from the actual experimental results.
基金Project(51576084)supported by the National Natural Science Foundation of China。
文摘The buoyancy effect on micro hydrogen jet flames in still air was numerially studied.The results show that when the jet velocity is relatively large(V≥0.2 m/s),the flame height,width and temperature decrease,whereas the peak OH mass fraction increases significantly under normal gravity(g=9.8 m/s^2).For a very low jet velocity(e.g.,V=0.1 m/s),both the peak OH mass fraction and flame temperature under g=9.8 m/s^2 are lower than the counterparts under g=0 m/s^2.Analysis reveals that when V≥0.2 m/s,fuel/air mixing will be promoted and combustion will be intensified due to radial flow caused by the buoyancy effect.However,the flame temperature will be slightly decreased owing to the large amount of entrainment of cold air into the reaction zone.For V=0.1 m/s,since the heat release rate is very low,the entrainment of cold air and fuel leakage from the rim of tube exit lead to a significant drop of flame temperature.Meanwhile,the heat loss rate from fuel to inner tube wall is larger under g=9.8 m/s^2 compared to that under g=0 m/s^2.Therefore,the buoyancy effect is overall negative at very low jet velocities.
基金This work was supported by the Fhndamental Research Funds for the Central Universities (No.XDJK2015C002) and the National Natural Science Foundation of China (No.51402243). Special thanks are given to Prof. H. J. M Bouwmeester and Dr. N.E. Benes from University of Twente for fruitful discussion.
文摘The influence of water vapor on silica membrane with pore size of ,-4A has been investigated in terms of adsorption properties and percolation effect at 50 and 90 ℃. Two methods are employed: spectroscopic ellipsometry for water vapor adsorption and gas permeation of binary mixture of helium and H2O The adsorption behaviors on the silica membrane comply with the first-order Langmuir isotherm. The investigation demonstrates that helium flux through the silica membrane decreases dramatically in presence of H20 molecules. The transport of gas molecules through such small pores is believed not to be continuous any more, whereas it is reasonably assumed that the gas molecules hop from one occupied site to another unoccupied one under the potential gradient. When the coverage of H20 molecules on the silica surface increases, the dramatic decrease of helium flux could be related to percolation effect, where the adsorbed H20 molecules on the silica surface block the hopping of helium molecules.
基金supported by the National Natural Science Foundation of China(No.11472304)the Graduate Innovation Grant of Hunan Province(No.CX2017B006),China。
文摘The bleed hole diameter,depth,and boundary layer thickness are key design parameters of a supersonic bleed system.The evolution trend of single-hole bleed flow coefficient with the ratio of boundary layer thickness to bleed hole diameter and the ratio of bleed hole depth to diameter is investigated by numerical simulations under choking and non-choking conditions.The results show that the subsonic leading edge of the circular hole and the subsonic part of the boundary layer are the main factors causing lateral flow of the bleed hole.The effect of diameter on bleed mass flow rate is due to the viscous effect which reduces the effective diameter.The larger the ratio of displacement thickness to bleed hole diameter,the more obvious the viscous effect is.The depth affects bleed flow rate by changing the opening and closing states of the separation zone.When a certain depth is reached,the development of the boundary layer reduces the effective captured stream tube and thus reduces the bleed mass flow rate.The main objective of the study is to obtain the physical mechanism of the bleed hole size parameters affecting the bleed mass flow rate,and to provide theoretical guidance for the selection of the size of bleed holes in the design of a porous arrays bleed system in hypersonic inlets.