During the measurement of atmospheric nitrate radical by long-path differential optical absorption spectroscopy, water vapor strong absorption could affect the measurement of nitrate radical and detection limits of sy...During the measurement of atmospheric nitrate radical by long-path differential optical absorption spectroscopy, water vapor strong absorption could affect the measurement of nitrate radical and detection limits of system. Under the tropospheric condition, the optical density of water vapor absorption is non-linearly dependent on column density. An effective method was developed to eliminate the effect of water vapor absorption. Reference spectra of water vapor based on the daytime atmospheric absorption spectra, when fitted together with change of cross section with water vapor column densities, gave a more accurate fitting of water vapor absorptions, thus its effect on the measurements of nitrate radical could be restricted to a minimum and detection limits of system reached 3.6 ppt. The modified method was applied during an intensive field campaign in the Pearl River Delta, China. The NO3 concentration in polluted air masses varied from 3.6 ppt to 82.5 ppt with an average level of 23.6±1.8 ppt.展开更多
Adsorption equilibrium isotherms of benzene in the concentrationrange of 500-4000 mg·m^-3 on two commercial activated carbons wereobtained using long-column method under 30 deg. C and differenthumidity condi- tio...Adsorption equilibrium isotherms of benzene in the concentrationrange of 500-4000 mg·m^-3 on two commercial activated carbons wereobtained using long-column method under 30 deg. C and differenthumidity condi- tions. Results show that the benzene and water vaporshave depression effects upon the adsorption of each other and thatthe unfavorable effect of water vapor resembles its single-componentisotherm on activated carbon. A com- petitive adsorption model wasproposed to explore the depression mechanisms of the non-ideal,non-similar binary adsorption systems.展开更多
A simplified model was developed to describe the water vapor adsorption on activated carbon. The development of the simplified model was started from the original model proposed by DO and his co-workers. Two different...A simplified model was developed to describe the water vapor adsorption on activated carbon. The development of the simplified model was started from the original model proposed by DO and his co-workers. Two different kinds of carbon materials were prepared for water vapor adsorption, and the adsorption experiments were conducted at different temperatures(20-50 °C) and relative humidities(5%-99%) to test the model. It is shown that the amount of adsorbed water vapor in micropore decreases with the temperature increasing, and the water molecules form larger water clusters around the functional group as the temperature is up to a higher value. The simplified model describes reasonably well for all the experimental data. According to the fitted values, the parameters of simplified model were represented by the temperature and then the model was used to calculate the water vapor adsorption amount at 25 °C and 35 °C. The results show that the model can get relatively accurate values to calculate the water vapor adsorption on activated carbon.展开更多
In the visible spectrum, the atmospheric attenuations to sunlight mainly include aerosol scattering, atmospheric molecule Rayleigh scattering and ozone absorption, while in the near-infrared spectrum (from 650 nm to 1...In the visible spectrum, the atmospheric attenuations to sunlight mainly include aerosol scattering, atmospheric molecule Rayleigh scattering and ozone absorption, while in the near-infrared spectrum (from 650 nm to 1 000 nm), we must take water-vapor absorption into account. Based on the atmospheric correction theory, using spectrum irradiance data measured by Instantaneous Ground spectrometer, ozone content measured by Microtops Ⅱozone monitor, water-vapor content and aerosol optical thickness measured by sun photometer, we give a new way to study water-vapor absorption to sunlight, and the result shows that the main peak values of water-vapor absorption coefficients are 0.025 cm-1, 0.073 cm-1, 0.124 cm-1, 0.090 cm-1, 0.141 cm-1 and 0.417 cm-1, which respectively lie at 692 nm, 725 nm, 761 nm, 818 nm, 912 nm and 937 nm.展开更多
Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and ...Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples.During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57-17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.展开更多
The purpose of this study is to develop low cost adsorbing materials to remove the heavy metals from waste waters. The outer covering of coconut, coconut shell, is the most abundant in the countries of its plantation ...The purpose of this study is to develop low cost adsorbing materials to remove the heavy metals from waste waters. The outer covering of coconut, coconut shell, is the most abundant in the countries of its plantation and enormous use. Utilization of agricultural waste (coconut shell) in the production of activated carbon potentially leads to produce a highly effective adsorbent generated from low cost raw materials that are available in huge quantity as renewable resources. At present coconut shell is not in use as valuable entity due to which disposal and ultimate environmental problems are faced. In this study coconut shells were impregnated with phosphoric acid and chemically activated at 450 C. The potential to remove chromium (VI) from aqueous solution by using activated coconut shells was investigated by batch experiment. The various sorption parameters i.e pH, sorbent dose, sorbate concentration, agitation time and agitation speed were optimized. The sorption of Cr (VI) onto activated carbon, developed from coconut shell, at pH 2 was achieved 81.25%. The best optimum conditions were obtained when 0.75 gm of sorbent was agitated at 150 rpm with 60 mg/L of sorbate for 40 min. Activated coconut shells has potential to be a good resource material for effective removal of chromium (VI) of low concentration from wastewater.展开更多
Scanning the absorption spectral line of water vapor through wavelength around 1368.597nm is successfully used to measure the value of micro-moisture content. The synchronous superposition average of original signal a...Scanning the absorption spectral line of water vapor through wavelength around 1368.597nm is successfully used to measure the value of micro-moisture content. The synchronous superposition average of original signal algorithm based on labview is innovated and applied to detecting weak spectrum absorption signal instead of low pass filter. Two data processing methods are used to get the concentration of water vapor in ppm: one is a general formula method which has newly deduced a general formula to calculate the concentration of gas with temperature and beam intensity ratio when the pressure is equal to or greater than 1 atm; the other is engineering calibration method which is proved to have high resolution and accuracy with the fitted curve of beam intensity ratio and concentration in ppm when the temperature changes form 258K to 305K and the pressure ranges from 1 atm to 5 atm.展开更多
Two measuring methods of the wide absorption spectrum by distributed feedback laser diodes (DFB-LDs) are presented in detecting the water vapor absorption line. One is the subsection scanning method, and it takes ad...Two measuring methods of the wide absorption spectrum by distributed feedback laser diodes (DFB-LDs) are presented in detecting the water vapor absorption line. One is the subsection scanning method, and it takes advantage of the wide spectrum tuning range by the temperature modulation and fast spectrum tuning speed by current modulation. Specifically, this method is realized by dividing a target spectral region into several sections which correspond to the specific temperature of DFB-LD, scanning every section by current modulation for hundreds times, and averaging the data to raise the signal to noise ratio (SNR), then combining all sections to get the whole spectrum. An accuracy of 10ppmv had been obtained in the measurement of water vapor with a 10-cm path length by this method. Another is data fitting method, based on the absorption line-shape function; the absorption line can be described by fitting with partial measured data. The fitting absorption line was fitted well with the measured data, and the square of correlation coefficient (R-square) was no less than 0.99.展开更多
文摘During the measurement of atmospheric nitrate radical by long-path differential optical absorption spectroscopy, water vapor strong absorption could affect the measurement of nitrate radical and detection limits of system. Under the tropospheric condition, the optical density of water vapor absorption is non-linearly dependent on column density. An effective method was developed to eliminate the effect of water vapor absorption. Reference spectra of water vapor based on the daytime atmospheric absorption spectra, when fitted together with change of cross section with water vapor column densities, gave a more accurate fitting of water vapor absorptions, thus its effect on the measurements of nitrate radical could be restricted to a minimum and detection limits of system reached 3.6 ppt. The modified method was applied during an intensive field campaign in the Pearl River Delta, China. The NO3 concentration in polluted air masses varied from 3.6 ppt to 82.5 ppt with an average level of 23.6±1.8 ppt.
文摘Adsorption equilibrium isotherms of benzene in the concentrationrange of 500-4000 mg·m^-3 on two commercial activated carbons wereobtained using long-column method under 30 deg. C and differenthumidity condi- tions. Results show that the benzene and water vaporshave depression effects upon the adsorption of each other and thatthe unfavorable effect of water vapor resembles its single-componentisotherm on activated carbon. A com- petitive adsorption model wasproposed to explore the depression mechanisms of the non-ideal,non-similar binary adsorption systems.
基金Projects(21376274,51206192)supported by the National Natural Science Foundation of China
文摘A simplified model was developed to describe the water vapor adsorption on activated carbon. The development of the simplified model was started from the original model proposed by DO and his co-workers. Two different kinds of carbon materials were prepared for water vapor adsorption, and the adsorption experiments were conducted at different temperatures(20-50 °C) and relative humidities(5%-99%) to test the model. It is shown that the amount of adsorbed water vapor in micropore decreases with the temperature increasing, and the water molecules form larger water clusters around the functional group as the temperature is up to a higher value. The simplified model describes reasonably well for all the experimental data. According to the fitted values, the parameters of simplified model were represented by the temperature and then the model was used to calculate the water vapor adsorption amount at 25 °C and 35 °C. The results show that the model can get relatively accurate values to calculate the water vapor adsorption on activated carbon.
基金Financial support was provided by The National High Technology Research and Development Program of China(863 Program):No 2001AA633030 and 2001AA633080.
文摘In the visible spectrum, the atmospheric attenuations to sunlight mainly include aerosol scattering, atmospheric molecule Rayleigh scattering and ozone absorption, while in the near-infrared spectrum (from 650 nm to 1 000 nm), we must take water-vapor absorption into account. Based on the atmospheric correction theory, using spectrum irradiance data measured by Instantaneous Ground spectrometer, ozone content measured by Microtops Ⅱozone monitor, water-vapor content and aerosol optical thickness measured by sun photometer, we give a new way to study water-vapor absorption to sunlight, and the result shows that the main peak values of water-vapor absorption coefficients are 0.025 cm-1, 0.073 cm-1, 0.124 cm-1, 0.090 cm-1, 0.141 cm-1 and 0.417 cm-1, which respectively lie at 692 nm, 725 nm, 761 nm, 818 nm, 912 nm and 937 nm.
基金Projects(21376274,51206192)supported by the National Natural Science Foundation of China
文摘Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples.During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57-17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.
文摘The purpose of this study is to develop low cost adsorbing materials to remove the heavy metals from waste waters. The outer covering of coconut, coconut shell, is the most abundant in the countries of its plantation and enormous use. Utilization of agricultural waste (coconut shell) in the production of activated carbon potentially leads to produce a highly effective adsorbent generated from low cost raw materials that are available in huge quantity as renewable resources. At present coconut shell is not in use as valuable entity due to which disposal and ultimate environmental problems are faced. In this study coconut shells were impregnated with phosphoric acid and chemically activated at 450 C. The potential to remove chromium (VI) from aqueous solution by using activated coconut shells was investigated by batch experiment. The various sorption parameters i.e pH, sorbent dose, sorbate concentration, agitation time and agitation speed were optimized. The sorption of Cr (VI) onto activated carbon, developed from coconut shell, at pH 2 was achieved 81.25%. The best optimum conditions were obtained when 0.75 gm of sorbent was agitated at 150 rpm with 60 mg/L of sorbate for 40 min. Activated coconut shells has potential to be a good resource material for effective removal of chromium (VI) of low concentration from wastewater.
基金This work was supported by Natural Science Foundation of China (60977058), Science Fund for Distinguished Young Scholars of Shandong Province of China (JQ200819), Research Award Fund for Outstanding Middle-aged' and Young Scientist of Shandong Province of China (2007BS08003), Independent Innovation Foundation of Shandong University (IIFSDU2010JC002).
文摘Scanning the absorption spectral line of water vapor through wavelength around 1368.597nm is successfully used to measure the value of micro-moisture content. The synchronous superposition average of original signal algorithm based on labview is innovated and applied to detecting weak spectrum absorption signal instead of low pass filter. Two data processing methods are used to get the concentration of water vapor in ppm: one is a general formula method which has newly deduced a general formula to calculate the concentration of gas with temperature and beam intensity ratio when the pressure is equal to or greater than 1 atm; the other is engineering calibration method which is proved to have high resolution and accuracy with the fitted curve of beam intensity ratio and concentration in ppm when the temperature changes form 258K to 305K and the pressure ranges from 1 atm to 5 atm.
基金This work was supported by Natural Science Foundation of China (60977058 & 61205083), Independent Innovation Foundation of Shandong University (IIFSDU2010JC002 & 2012JC015), the key technology projects of Shandong Province (2010GGX10137), and promotive research fund for excellent young and middle-aged scientists of Shandong Province (BS2010DX028). Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
文摘Two measuring methods of the wide absorption spectrum by distributed feedback laser diodes (DFB-LDs) are presented in detecting the water vapor absorption line. One is the subsection scanning method, and it takes advantage of the wide spectrum tuning range by the temperature modulation and fast spectrum tuning speed by current modulation. Specifically, this method is realized by dividing a target spectral region into several sections which correspond to the specific temperature of DFB-LD, scanning every section by current modulation for hundreds times, and averaging the data to raise the signal to noise ratio (SNR), then combining all sections to get the whole spectrum. An accuracy of 10ppmv had been obtained in the measurement of water vapor with a 10-cm path length by this method. Another is data fitting method, based on the absorption line-shape function; the absorption line can be described by fitting with partial measured data. The fitting absorption line was fitted well with the measured data, and the square of correlation coefficient (R-square) was no less than 0.99.