[Objective] The aim was to study on impacts of excessive soaking N, P, and K insubstrate plots of and seedling growth. [Method] Substrate was designed to add additional 1/2 water after saturation and expansion. Dispos...[Objective] The aim was to study on impacts of excessive soaking N, P, and K insubstrate plots of and seedling growth. [Method] Substrate was designed to add additional 1/2 water after saturation and expansion. Disposable excessive soak- ing and regression relation of nutrition infusion of substrate plots were studied by design of 13 time gradient. Plant nutrition absorption and growth effects after sub- strate plots immersed by water were investigated by growing tomato. [Result] Con- centration and time of the three nutrition immersed in water had the regression equation of each, as follows: N=-2E-05t2+0.016 lt+2.0553, P=0.002 2t+2.248 5 and K=0.004 7t+0.875 8. With nutrition loss of the three, however, loss amount was al- most same with variance analysis of regression equation, which may result from its volatilization. Regression equations of P and K were: P=0.125 7t-0.117, and K=0.022 5t.1514, which led to adverse impact on plant absorption of N and K above ground, whose equations were N=20.64e-4E-0.4t, and K=E-06t2-0.011 3t+29.055. Meanwhile, un- der the condition, sound seedling index was not impacted a lot by excessive immer- sion. [Conclusion] This study has provided theoretical reference for guidance of sub- strate plot soaking method, cultivation and regulation, and breeding, as well as agri- cultural production.展开更多
The stability of unsaturated soil slope has been the hot point recently. Especially, the seeping rainfall makes losing stability of unsaturated soil slope, and causes enormous loss to the producation and safety of oth...The stability of unsaturated soil slope has been the hot point recently. Especially, the seeping rainfall makes losing stability of unsaturated soil slope, and causes enormous loss to the producation and safety of other people. The seeping rainfall makes volumetric water content of unsaturated soil slope changing, and the volumetric water content has directly relationship with matric suction. And matric suction also has directly relationship with the stability of unsaturated soil slope. So the change of matric suction influence the stability changing, that is, safety coefficient has decided relationship with volumetric water content. The profile of dangerous volumetric water content curves of unsaturated soil slope has been obtained. If a volumetric water content curve of some unsaturated soil slope belongs to one of these dongerous curves, the unsaturated soil slope could be in danger. So this is called DVWCCP(dangerous volumetric water content curves profile). By monitoring the volumetric water content curves can obtain the stability information of some soil slope to serve producing and safety.展开更多
The carbonaceous adsorbent was prepared from mixtures of dewatered sludge and sawdust with enhanced ZnCl2 chemical activation.Characteristics of the adsorbent were studied using scanning electron microscope(SEM) ,Four...The carbonaceous adsorbent was prepared from mixtures of dewatered sludge and sawdust with enhanced ZnCl2 chemical activation.Characteristics of the adsorbent were studied using scanning electron microscope(SEM) ,Fourier transform infrared spectroscopy(FT-IR) ,and adsorption of nitrogen.The surface analysis showed that the carbonaceous adsorbent had good specific surface and porosity(394 m 2 ·g-1of BET surface,0.12 and 0.10 ml·g-1of microporous and mesoporous volume,respectively) .The oxygen functional groups such as OH,C O and C O were found on the surface by FTIR and XPS(X-ray photoelectron spectroscopy) .The adsorption of elemental mercury(Hg0) on the carbonaceous adsorbent was studied in a fixed bed reactor.The dynamic adsorption capacity of carbonaceous adsorbent increased with influent mercury concentration,from 23.6μg·g-1at 12.58μg·m-3to 87.9μg·g-1at 72.50μg·m-3,and decreased as the adsorption temperature increased,from 246 μg·g-1 at 25°C to 61.3μg·g-1 at 140°C,when dry nitrogen was used as the carrier gas.The carbonaceous adsorbent presented higher dynamic adsorption capacity than activated carbon,which was 81.2μg·g-1and 53.8μg·g-1respectively.The adsorption data were fitted to the Langmuir adsorption model.The physical and chemical adsorption were identified on the adsorbent.展开更多
The present study deals with the Water Quality Index (WQI) and absorption of zinc from electroplating industry effluent using ftmgi. The physico-chemical parameters such as EC (Electrical Conductivity), TDS (Tota...The present study deals with the Water Quality Index (WQI) and absorption of zinc from electroplating industry effluent using ftmgi. The physico-chemical parameters such as EC (Electrical Conductivity), TDS (Total Dissolved Solids), total hardness, magnesium, calcium, chloride, sodium, potassium, nickel, chromium and zinc content was above the permissible limits of BIS (Bureau of Indian Standards). The WQI was 13, which showed that the pollution level of the electroplating industry effluent was severe in the rating scale and the effluent was not suitable for disposal without treatment. Three fungal species such as Aspergillus niger, Peinicillium chrysogenum and Rhizopus nigricans were used for absorption studies. Different concentrations (25, 50, 75 and 100%) of electroplating industry effluent along with 1 gm of fungal mycelium with (1%) and without carbon source was incubated in a shaker for a period of 7 days in order to observe zinc absorption capacity. The absorption capacity of zinc was found to be higher in Aspergillus niger followed by Rhizopus nigricans and Penicillium chrysogenum. Among the three fungal species Aspergillus niger had high (50%) potential of zinc absorption with carbon source and low concentration (25%) of electroplating industry effluent.展开更多
The impact force response of a peach impacting on a metal flat-surface was considered as nondestructive determination of firmness. The objectives were to analyze the effect of firmness, drop height, fruit mass, and im...The impact force response of a peach impacting on a metal flat-surface was considered as nondestructive determination of firmness. The objectives were to analyze the effect of firmness, drop height, fruit mass, and impact orientation on the impact force parameters, and to establish a relationship between the impact force parameter and firmness. The effect of fruit firmness, drop height and fruit mass on the impact force parameters (coefficient of restitution, percentage of energy absorbed, and coefficient of force-time) was evaluated. The study found that the coefficient of restitution, percentage of energy absorbed, and force-time impact coefficient were significantly affected by fruit ripeness, but not affected by drop height, impact position (fruit cheek), and mass. The percentage of absorbed energy increased with ripeness, while the force-time impact coefficient and coefficient of restitution decreased with ripeness. Relationships were obtained between the three impact characteristic parameters (force-time impact coefficient, coefficient of restitution, and percentage of energy absorbed) and peach firmness using a polynomial model (R2=0.932), S model (R2=0.910), and exponential model (R2=0.941), respectively.展开更多
基金Supported by Action Programs of Service Business of Scientists and Engineers in MOST(2009GJA00026)Science and Technology Project of Beijing Municipal Bureau of Agriculture(2010020101)+1 种基金Science and Technology project of Beijing Municipal Bureau of Agriculture(011050465100002)Science and Technology Project of Beijing Academy of Agricultural and Forestry Sciences(2010A016)~~
文摘[Objective] The aim was to study on impacts of excessive soaking N, P, and K insubstrate plots of and seedling growth. [Method] Substrate was designed to add additional 1/2 water after saturation and expansion. Disposable excessive soak- ing and regression relation of nutrition infusion of substrate plots were studied by design of 13 time gradient. Plant nutrition absorption and growth effects after sub- strate plots immersed by water were investigated by growing tomato. [Result] Con- centration and time of the three nutrition immersed in water had the regression equation of each, as follows: N=-2E-05t2+0.016 lt+2.0553, P=0.002 2t+2.248 5 and K=0.004 7t+0.875 8. With nutrition loss of the three, however, loss amount was al- most same with variance analysis of regression equation, which may result from its volatilization. Regression equations of P and K were: P=0.125 7t-0.117, and K=0.022 5t.1514, which led to adverse impact on plant absorption of N and K above ground, whose equations were N=20.64e-4E-0.4t, and K=E-06t2-0.011 3t+29.055. Meanwhile, un- der the condition, sound seedling index was not impacted a lot by excessive immer- sion. [Conclusion] This study has provided theoretical reference for guidance of sub- strate plot soaking method, cultivation and regulation, and breeding, as well as agri- cultural production.
文摘The stability of unsaturated soil slope has been the hot point recently. Especially, the seeping rainfall makes losing stability of unsaturated soil slope, and causes enormous loss to the producation and safety of other people. The seeping rainfall makes volumetric water content of unsaturated soil slope changing, and the volumetric water content has directly relationship with matric suction. And matric suction also has directly relationship with the stability of unsaturated soil slope. So the change of matric suction influence the stability changing, that is, safety coefficient has decided relationship with volumetric water content. The profile of dangerous volumetric water content curves of unsaturated soil slope has been obtained. If a volumetric water content curve of some unsaturated soil slope belongs to one of these dongerous curves, the unsaturated soil slope could be in danger. So this is called DVWCCP(dangerous volumetric water content curves profile). By monitoring the volumetric water content curves can obtain the stability information of some soil slope to serve producing and safety.
基金Supported by the Science and Technology Planning Project of Guangdong(2006A36701004)the Basic Research Program of the Ministry of Environmental Protection(zx_200910_02)
文摘The carbonaceous adsorbent was prepared from mixtures of dewatered sludge and sawdust with enhanced ZnCl2 chemical activation.Characteristics of the adsorbent were studied using scanning electron microscope(SEM) ,Fourier transform infrared spectroscopy(FT-IR) ,and adsorption of nitrogen.The surface analysis showed that the carbonaceous adsorbent had good specific surface and porosity(394 m 2 ·g-1of BET surface,0.12 and 0.10 ml·g-1of microporous and mesoporous volume,respectively) .The oxygen functional groups such as OH,C O and C O were found on the surface by FTIR and XPS(X-ray photoelectron spectroscopy) .The adsorption of elemental mercury(Hg0) on the carbonaceous adsorbent was studied in a fixed bed reactor.The dynamic adsorption capacity of carbonaceous adsorbent increased with influent mercury concentration,from 23.6μg·g-1at 12.58μg·m-3to 87.9μg·g-1at 72.50μg·m-3,and decreased as the adsorption temperature increased,from 246 μg·g-1 at 25°C to 61.3μg·g-1 at 140°C,when dry nitrogen was used as the carrier gas.The carbonaceous adsorbent presented higher dynamic adsorption capacity than activated carbon,which was 81.2μg·g-1and 53.8μg·g-1respectively.The adsorption data were fitted to the Langmuir adsorption model.The physical and chemical adsorption were identified on the adsorbent.
文摘The present study deals with the Water Quality Index (WQI) and absorption of zinc from electroplating industry effluent using ftmgi. The physico-chemical parameters such as EC (Electrical Conductivity), TDS (Total Dissolved Solids), total hardness, magnesium, calcium, chloride, sodium, potassium, nickel, chromium and zinc content was above the permissible limits of BIS (Bureau of Indian Standards). The WQI was 13, which showed that the pollution level of the electroplating industry effluent was severe in the rating scale and the effluent was not suitable for disposal without treatment. Three fungal species such as Aspergillus niger, Peinicillium chrysogenum and Rhizopus nigricans were used for absorption studies. Different concentrations (25, 50, 75 and 100%) of electroplating industry effluent along with 1 gm of fungal mycelium with (1%) and without carbon source was incubated in a shaker for a period of 7 days in order to observe zinc absorption capacity. The absorption capacity of zinc was found to be higher in Aspergillus niger followed by Rhizopus nigricans and Penicillium chrysogenum. Among the three fungal species Aspergillus niger had high (50%) potential of zinc absorption with carbon source and low concentration (25%) of electroplating industry effluent.
基金Project supported by the National Natural Science Foundation of China (No. 30570449)the Program for New Century Excellent Talents in Chinese University (No. NCET-04-0544)
文摘The impact force response of a peach impacting on a metal flat-surface was considered as nondestructive determination of firmness. The objectives were to analyze the effect of firmness, drop height, fruit mass, and impact orientation on the impact force parameters, and to establish a relationship between the impact force parameter and firmness. The effect of fruit firmness, drop height and fruit mass on the impact force parameters (coefficient of restitution, percentage of energy absorbed, and coefficient of force-time) was evaluated. The study found that the coefficient of restitution, percentage of energy absorbed, and force-time impact coefficient were significantly affected by fruit ripeness, but not affected by drop height, impact position (fruit cheek), and mass. The percentage of absorbed energy increased with ripeness, while the force-time impact coefficient and coefficient of restitution decreased with ripeness. Relationships were obtained between the three impact characteristic parameters (force-time impact coefficient, coefficient of restitution, and percentage of energy absorbed) and peach firmness using a polynomial model (R2=0.932), S model (R2=0.910), and exponential model (R2=0.941), respectively.