A batch experiment was conducted to investigate the adsorption of trivalent chromium (Cr(Ⅲ)) from aqueous solutions by sugarcane pulp residue (SPR) and biochar. The results show that Cr(Ⅲ) adsorption by SPR ...A batch experiment was conducted to investigate the adsorption of trivalent chromium (Cr(Ⅲ)) from aqueous solutions by sugarcane pulp residue (SPR) and biochar. The results show that Cr(Ⅲ) adsorption by SPR and biochar is highly pH-dependent and Cr(Ⅲ) adsorption amount increases with the increase of pH. The adsorption kinetics of Cr(Ⅲ) fits well with the pseudo-second-order model. The maximum Cr(Ⅲ) adsorption capacities of 15.85 mg/g and 3.43 mg/g for biochar and SPR were calculated by Langmuir model. This indicates that biochar has a larger ability for Cr(Ⅲ) adsorption than SPR. The free energy change value (AG) reveals a spontaneous sorption process of Cr(Ⅲ) onto SPR and non-spontaneous sorption process onto biochar. The entropy change (AS) and enthalpy change (AH) are found to be 66.27 J/(mol'K) and 17.13 kJ/mol for SPR and 91.59 J/(mol-K) and 30.875 kJ/mol for biochar which further reflect an affinity of Cr(Ⅲ) onto SPR and biochar. It is suggested that biochar has potential to be an efficient adsorbent in the removal of Cr(Ⅲ) from industrial wastewater.展开更多
A magnesia adsorbent was prepared from straw pulp black liquor and magnesium sulfate for the first time, and its adsorption of phenol from aqueous solution was examined. The characteristics of the adsorbent were teste...A magnesia adsorbent was prepared from straw pulp black liquor and magnesium sulfate for the first time, and its adsorption of phenol from aqueous solution was examined. The characteristics of the adsorbent were tested through chemical analysis, surface analysis, X-ray diffraction and FT-IR spectroscopy. The effects of various factors, such as dose, adsorption time and adsorption temperature, on phenol adsorption behavior were studied. The results show that the adsorption processes can be fitted to the isotherm Langmuir model very well. It was found that the adsorption process was strongly influenced by temperature and the optimal temperature for phenol removal was 40 ℃. The optimum adsorption time was 10 min, and desorption would happen afterwards. Between the models of Langmuir and Freundlich, the adsorption process of phenol onto magnesia fitted the Langmuir equation better.展开更多
基金Project(50925417) supported by the National Funds for Distinguished Young Scientist,ChinaProject(50830301) supported by the Key Program of National Natural Science Foundation of ChinaProject(51074191) supported by the National Natural Science Foundation of China
文摘A batch experiment was conducted to investigate the adsorption of trivalent chromium (Cr(Ⅲ)) from aqueous solutions by sugarcane pulp residue (SPR) and biochar. The results show that Cr(Ⅲ) adsorption by SPR and biochar is highly pH-dependent and Cr(Ⅲ) adsorption amount increases with the increase of pH. The adsorption kinetics of Cr(Ⅲ) fits well with the pseudo-second-order model. The maximum Cr(Ⅲ) adsorption capacities of 15.85 mg/g and 3.43 mg/g for biochar and SPR were calculated by Langmuir model. This indicates that biochar has a larger ability for Cr(Ⅲ) adsorption than SPR. The free energy change value (AG) reveals a spontaneous sorption process of Cr(Ⅲ) onto SPR and non-spontaneous sorption process onto biochar. The entropy change (AS) and enthalpy change (AH) are found to be 66.27 J/(mol'K) and 17.13 kJ/mol for SPR and 91.59 J/(mol-K) and 30.875 kJ/mol for biochar which further reflect an affinity of Cr(Ⅲ) onto SPR and biochar. It is suggested that biochar has potential to be an efficient adsorbent in the removal of Cr(Ⅲ) from industrial wastewater.
基金the financial support from the Natural Science Foundation of China (No. 20477041)
文摘A magnesia adsorbent was prepared from straw pulp black liquor and magnesium sulfate for the first time, and its adsorption of phenol from aqueous solution was examined. The characteristics of the adsorbent were tested through chemical analysis, surface analysis, X-ray diffraction and FT-IR spectroscopy. The effects of various factors, such as dose, adsorption time and adsorption temperature, on phenol adsorption behavior were studied. The results show that the adsorption processes can be fitted to the isotherm Langmuir model very well. It was found that the adsorption process was strongly influenced by temperature and the optimal temperature for phenol removal was 40 ℃. The optimum adsorption time was 10 min, and desorption would happen afterwards. Between the models of Langmuir and Freundlich, the adsorption process of phenol onto magnesia fitted the Langmuir equation better.