Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly ...Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.展开更多
The absorption-compression heat pump (ACHP) has been considered as an effective approach to recover and utilize low-grade heat sources. In the present study, the first and second law thermodynamic analyses of the AC...The absorption-compression heat pump (ACHP) has been considered as an effective approach to recover and utilize low-grade heat sources. In the present study, the first and second law thermodynamic analyses of the ACHP with NH3/H20 as working fluid were performed. Thermodynamic properties of each point and heat transfer rate of each component in the cycle under basic operation conditions were calculated from the first law analysis. Following the second law of thermodynamics, the entropy generation of each component and the total entropy generation of the system were obtained. The effect~ of the heating temperature, heat source temperature, and compression ratio on the coefficient of performance (COP) and the total entropy generation ( STot ) of the system were examined. The results show that the increase in COP corresponds to a decrease in STot, and vice versa; besides, for certain operating conditions, an optimum compression ratio in the NH~/H20 ACHP exists.展开更多
文摘Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.
基金National Key Technologies R&D Program of China(No. 2012BABZ︱2B01)National Natural Science Foundation of China(No. 51106161)Innovation Foundation of President of Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences(No. 0907r7)
文摘The absorption-compression heat pump (ACHP) has been considered as an effective approach to recover and utilize low-grade heat sources. In the present study, the first and second law thermodynamic analyses of the ACHP with NH3/H20 as working fluid were performed. Thermodynamic properties of each point and heat transfer rate of each component in the cycle under basic operation conditions were calculated from the first law analysis. Following the second law of thermodynamics, the entropy generation of each component and the total entropy generation of the system were obtained. The effect~ of the heating temperature, heat source temperature, and compression ratio on the coefficient of performance (COP) and the total entropy generation ( STot ) of the system were examined. The results show that the increase in COP corresponds to a decrease in STot, and vice versa; besides, for certain operating conditions, an optimum compression ratio in the NH~/H20 ACHP exists.