Efficient photogenerated carrier migration/separation plays a critical role in increasing the photocatalytic performance of g-C_(3)N_(4).Herein,sulfonic acid group-functionalized g-C_(3)N_(4)(SACN)was synthesized and ...Efficient photogenerated carrier migration/separation plays a critical role in increasing the photocatalytic performance of g-C_(3)N_(4).Herein,sulfonic acid group-functionalized g-C_(3)N_(4)(SACN)was synthesized and then synchronously strengthened by a facile-solid-state thermal reaction of g-C_(3)N_(4)and sulfamic acid.As a solid strong acid,sulfamic acid can be used to achieve acid etching on the surface of g-C_(3)N_(4)with the assistance of thermal treatment,leading to an enlarged specific surface area and increased surface catalytic reaction sites.More importantly,our experiments and density functional theory calculations indicate that the driving force generated by the negative inductive effect of sulfonic acid groups significantly improves the charge transfer dynamics and effectively inhibits their recombination.Moreover,the negative inductive effect can induce charge redistribution,which reduces the conduction band potential of g-C_(3)N_(4)to enhance the reduction ability of photo-induced electrons.As a result,the SACN-400 sample showed excellent photocatalytic performance in H2 generation with an apparent quantum efficiency of 11.03%at 420±15 nm,as well as an efficient photodegradation rate for organic pollutants.展开更多
The present work concerns the study of solvent effects on the geometrical structures, as well as one- and two-photon absorption (TPA) processes, for two series of alkyne and alkene π-bridging molecules, within the ...The present work concerns the study of solvent effects on the geometrical structures, as well as one- and two-photon absorption (TPA) processes, for two series of alkyne and alkene π-bridging molecules, within the framework of the polarization continuum model. Particular emphasis was put on the characterization of solvent effects on the molecular geometrical structures and geometric distortion, which were measured by the bond-length-alternation parameter. The π centres in the compounds are seen to play a decisive role in increasing the TPA cross section and nonlinear optical properties. All studied molecules have relatively strong TPA characteristics, while the alkyne π-bridging ones yield larger TPA cross sections.展开更多
The kinetics of formic acid oxidation (FAO) on Pd(111) in 0.1 mol/L H2SO4+0.1 mol/L HCOOH with and without addition of Na2SO4 is studied using cyclic voltammetry and potential step method, which is compared with that ...The kinetics of formic acid oxidation (FAO) on Pd(111) in 0.1 mol/L H2SO4+0.1 mol/L HCOOH with and without addition of Na2SO4 is studied using cyclic voltammetry and potential step method, which is compared with that in 0.1 mol/L HClO4. It is found that adsorbed sulfate has significant inhibition effect on FAO kinetics. After addition of 0.05 mol/L or 0.1 mol/L Na2SO4, FAO current in the negative-going scan is found to be significantly smaller than that at the same potential in the positive-going scan. We speculate that at potentials positive of the phase transition potential for the (SO4*ad)m+[(H2O)n-H3O+] or(SO4*ad)m+[Na+(H2O)n-H3O+] adlayer, the adlayer structure probably becomes denser and more stable with the increase of potential or with the addition of Na2SO4. The formation of connected adlayer network greatly enhance the stability of the adlayer, and the insertion of positive-charged H+ or Na+ into the adlayer network further reduces the electrostatic repulsion between partially charged sulfates. As a result, the destruction/desorption of compact sulfate adlayer becomes more difficult, which leaves much less free sites on the surface for FAO, and thus FAO kinetics at higher potentials and in the subsequent negative-going potential scan is significantly inhibited.展开更多
Alloyed nanoparticles with core-shell structures provide a favorable model to modulate interfacial interaction and surface structures at the atomic level,which is important for designing electrocatalysts with high act...Alloyed nanoparticles with core-shell structures provide a favorable model to modulate interfacial interaction and surface structures at the atomic level,which is important for designing electrocatalysts with high activity and durability.Herein,core-shell structured Pd3M@Pt/C nanoparticles with binary PdM alloy cores(M=Fe,Ni,and Co)and a monolayer Pt shell were successfully synthesized with diverse interfaces.Among these,Pd3Fe@Pt/C exhibited the best oxygen reduction reaction catalytic performance,roughly 5.4 times more than that of the commercial Pt/C catalyst used as reference.The significantly enhanced activity is attributed to the combined effects of strain engineering,interfacial electron transfer,and improved Pt utilization.Density functional theory simulations and extended X-ray absorption fine structure analysis revealed that engineering the alloy core with moderate lattice mismatch and alloy composition(Pd3Fe)optimizes the surface oxygen adsorption energy,thereby rendering excellent electrocatalytic activity.Future researches may use this study as a guide on the construction of highly effective core-shell electrocatalysts for various energy conversions and other applications.展开更多
基金supported by the National Basic Research Program of China(973 program)(2014CB239402)the National Natural Science Foundation of China(20923006,21120102036,21106015,91233201)the Fundamental Research Funds for the Central Universities(DUT13RC(3)103,DUT15LK08)~~
基金supported by the National Basic Research Program of China (973 Program,2009CB220009)the National Natural Science Foundation of China (21106015,21120102036,and 20923006)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China (20110041120005)the Swedish Energy Agency and K&A Wallenberg Foundation~~
文摘Efficient photogenerated carrier migration/separation plays a critical role in increasing the photocatalytic performance of g-C_(3)N_(4).Herein,sulfonic acid group-functionalized g-C_(3)N_(4)(SACN)was synthesized and then synchronously strengthened by a facile-solid-state thermal reaction of g-C_(3)N_(4)and sulfamic acid.As a solid strong acid,sulfamic acid can be used to achieve acid etching on the surface of g-C_(3)N_(4)with the assistance of thermal treatment,leading to an enlarged specific surface area and increased surface catalytic reaction sites.More importantly,our experiments and density functional theory calculations indicate that the driving force generated by the negative inductive effect of sulfonic acid groups significantly improves the charge transfer dynamics and effectively inhibits their recombination.Moreover,the negative inductive effect can induce charge redistribution,which reduces the conduction band potential of g-C_(3)N_(4)to enhance the reduction ability of photo-induced electrons.As a result,the SACN-400 sample showed excellent photocatalytic performance in H2 generation with an apparent quantum efficiency of 11.03%at 420±15 nm,as well as an efficient photodegradation rate for organic pollutants.
文摘The present work concerns the study of solvent effects on the geometrical structures, as well as one- and two-photon absorption (TPA) processes, for two series of alkyne and alkene π-bridging molecules, within the framework of the polarization continuum model. Particular emphasis was put on the characterization of solvent effects on the molecular geometrical structures and geometric distortion, which were measured by the bond-length-alternation parameter. The π centres in the compounds are seen to play a decisive role in increasing the TPA cross section and nonlinear optical properties. All studied molecules have relatively strong TPA characteristics, while the alkyne π-bridging ones yield larger TPA cross sections.
基金supported by the National Natural Science Foundation of China(No.21872132 and No.21832004)973 Program from the Ministry of Science and Technology of China(No.201503932301)
文摘The kinetics of formic acid oxidation (FAO) on Pd(111) in 0.1 mol/L H2SO4+0.1 mol/L HCOOH with and without addition of Na2SO4 is studied using cyclic voltammetry and potential step method, which is compared with that in 0.1 mol/L HClO4. It is found that adsorbed sulfate has significant inhibition effect on FAO kinetics. After addition of 0.05 mol/L or 0.1 mol/L Na2SO4, FAO current in the negative-going scan is found to be significantly smaller than that at the same potential in the positive-going scan. We speculate that at potentials positive of the phase transition potential for the (SO4*ad)m+[(H2O)n-H3O+] or(SO4*ad)m+[Na+(H2O)n-H3O+] adlayer, the adlayer structure probably becomes denser and more stable with the increase of potential or with the addition of Na2SO4. The formation of connected adlayer network greatly enhance the stability of the adlayer, and the insertion of positive-charged H+ or Na+ into the adlayer network further reduces the electrostatic repulsion between partially charged sulfates. As a result, the destruction/desorption of compact sulfate adlayer becomes more difficult, which leaves much less free sites on the surface for FAO, and thus FAO kinetics at higher potentials and in the subsequent negative-going potential scan is significantly inhibited.
基金the Natural Science Foundation of Hainan Province(2019RC007)the National Natural Science Foundation of China(21805104,21606050,21905056,21905045,and U1801257)+3 种基金the Natural Science Foundation of Guangdong Province(2018A0303130239,2018A0303130223)Pearl River Science and Technology New Star Project(201806010039)the Start-up Research Foundation of Hainan University(KYQD(ZR)1908)Research Fund Program of Key Laboratory of Fuel Cell Technology of Guangdong Province。
文摘Alloyed nanoparticles with core-shell structures provide a favorable model to modulate interfacial interaction and surface structures at the atomic level,which is important for designing electrocatalysts with high activity and durability.Herein,core-shell structured Pd3M@Pt/C nanoparticles with binary PdM alloy cores(M=Fe,Ni,and Co)and a monolayer Pt shell were successfully synthesized with diverse interfaces.Among these,Pd3Fe@Pt/C exhibited the best oxygen reduction reaction catalytic performance,roughly 5.4 times more than that of the commercial Pt/C catalyst used as reference.The significantly enhanced activity is attributed to the combined effects of strain engineering,interfacial electron transfer,and improved Pt utilization.Density functional theory simulations and extended X-ray absorption fine structure analysis revealed that engineering the alloy core with moderate lattice mismatch and alloy composition(Pd3Fe)optimizes the surface oxygen adsorption energy,thereby rendering excellent electrocatalytic activity.Future researches may use this study as a guide on the construction of highly effective core-shell electrocatalysts for various energy conversions and other applications.