The methods were studied to improve the cooling performance of the absorption refrigeration system(ARS) driven by low-grade solar energy with ultrasonic wave, while the mechanism of ultrasonic wave strengthening boili...The methods were studied to improve the cooling performance of the absorption refrigeration system(ARS) driven by low-grade solar energy with ultrasonic wave, while the mechanism of ultrasonic wave strengthening boiling mass transfer in LiB r solution was also analyzed with experiment. The experimental results indicate that, under the driving heat source of 60–100 oC and the ultrasonic power of 20–60 W, the mass flux of cryogen water in Li Br solution is higher after the application of ultrasonic wave than auxiliary heating with electric rod of the same power, so the ultrasonic application effectively enhances the heat utilization efficiency. The distance H from ultrasonic transducer to vapor/liquid interface significantly affects mass transfer enhancement, so an optimal Hopt corresponding to certain ultrasonic power is beneficial to reaching the best strengthening effect for ultrasonic mass transfer. When the ultrasonic power increases, the mass transfer obviously speeds up in the cryogen water; however, as the power increases to a certain extent, the flux reaches a plateau without obvious increment. Moreover, the ultrasound-enhanced mass transfer technology can reduce the minimum temperature of driving heat source required by ARS and promote the application of solar energy during absorption refrigeration.展开更多
基金Project(51275180)supported by the National Natural Science Foundation of ChinaProject(S201304416899)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(sybzzxm201213)supported by Doctorate Dissertation Funds of Guangdong Province,China
文摘The methods were studied to improve the cooling performance of the absorption refrigeration system(ARS) driven by low-grade solar energy with ultrasonic wave, while the mechanism of ultrasonic wave strengthening boiling mass transfer in LiB r solution was also analyzed with experiment. The experimental results indicate that, under the driving heat source of 60–100 oC and the ultrasonic power of 20–60 W, the mass flux of cryogen water in Li Br solution is higher after the application of ultrasonic wave than auxiliary heating with electric rod of the same power, so the ultrasonic application effectively enhances the heat utilization efficiency. The distance H from ultrasonic transducer to vapor/liquid interface significantly affects mass transfer enhancement, so an optimal Hopt corresponding to certain ultrasonic power is beneficial to reaching the best strengthening effect for ultrasonic mass transfer. When the ultrasonic power increases, the mass transfer obviously speeds up in the cryogen water; however, as the power increases to a certain extent, the flux reaches a plateau without obvious increment. Moreover, the ultrasound-enhanced mass transfer technology can reduce the minimum temperature of driving heat source required by ARS and promote the application of solar energy during absorption refrigeration.