A low-cost adsorbent was prepared from sludge and straw by pyrolysis in a dried state with the surface area of the adsorbent of 829.49 ma. g-l, micropore volume of 0.176 cm2·g-1 and average pore radius of 5.0 nm....A low-cost adsorbent was prepared from sludge and straw by pyrolysis in a dried state with the surface area of the adsorbent of 829.49 ma. g-l, micropore volume of 0.176 cm2·g-1 and average pore radius of 5.0 nm. The kinetic, equilibrium isotherm and thermodynamic characteristics of trisodium 1-(1-naphthylazo)-2-hydroxynaphthalene- 4',6,8-trisulphonate (acid scarlet 3R) onto the adsorbent from sludge and straw were investigated. The results indicated that the pseudo second order adsorption was the predominant adsorption mechanism of acid scarlet 3R. Thus, the adsorption phenomenon was suggested as a chemical process. The adsorption data were fitted better with Langmuir model than Freundlich model, indicating that the adsorption of acid scarlet 3R belonged to the monolayer adsorption and mainly occurred in micropores.展开更多
Proteins adsorption at solid surfaces are of paramount important for many natural processes. However, the role of specific water in influencing the adsorption process has not been well understood. We used molecular dy...Proteins adsorption at solid surfaces are of paramount important for many natural processes. However, the role of specific water in influencing the adsorption process has not been well understood. We used molecular dynamics simulation to study the adsorption of BPTI on Au surface in three water environments (dielectric constant model, partial and full solvation models). The result shows that a fast and strong adsorption can occur in the dielectric environment, which leads to significant structure changes, as confirmed by great deviation from the crystal structure, largely spreading along the Au surface, rapid lose in all secondary structures and the great number of atoms in contact with the surface. Compared to the dielectric model, slower adsorption and fewer changes in the calculated properties above are observed in the partial solvation system since the specific water layer weakens the adsorption effects. However, in the partial solvation system, the adsorption of polar Au surface causes a significant decrease in the specific hydration around the protein, which still results in large structure changes similar to the dielectric system, but with much less adsorption extent. Enough water molecules in the full solvation system could allow the protein to rotate, and to large extent preserve the protein native structure, thus leading to the slowest and weakest adsorption. On the whole, the effects of non-specific and specific solvation on the protein structure and adsorption dynamics are significantly different, highlighting the importance of the specific water molecule in the protein adsorption.展开更多
Conjugated microporous polymers(CMPs) have recently received extensive attention in oil/organic solvent-water separation field as a kind of ideal porous absorbents with tunable porosity, large surface areas, and super...Conjugated microporous polymers(CMPs) have recently received extensive attention in oil/organic solvent-water separation field as a kind of ideal porous absorbents with tunable porosity, large surface areas, and super-hydrophobicity. However, reports on the application of CMPs in adsorption of hydrophilic contaminants from water are very few. In this work, we studied the adsorption of metronidazole(MNZ), a polar antibiotic, by two kinds of CMPs. The adsorption characteristics of MNZ by the CMPs, including adsorption kinetics, mechanism, and isotherm parameters were calculated. The adsorption kinetics of MNZ was well expressed by the pseudo-second-order model, and the adsorption process was found to be mainly controlled by film diffusion. The adsorption isotherm data agreed well with the Langmuir isotherm model, and the values of free energy E indicated that the adsorption nature of MNZ on the CMPs was physisorption. Increasing dispersion degree of the CMPs in MNZ solution resulted in greater adsorption. This work may provide fundamental guidance for the removal of antibiotics by CMPs.展开更多
基金Supported by the Shanxi Science and Technology Agency Research Project(20100321085)the Scientific Research Foun-dation of the Shanxi Education Department(20111029)
文摘A low-cost adsorbent was prepared from sludge and straw by pyrolysis in a dried state with the surface area of the adsorbent of 829.49 ma. g-l, micropore volume of 0.176 cm2·g-1 and average pore radius of 5.0 nm. The kinetic, equilibrium isotherm and thermodynamic characteristics of trisodium 1-(1-naphthylazo)-2-hydroxynaphthalene- 4',6,8-trisulphonate (acid scarlet 3R) onto the adsorbent from sludge and straw were investigated. The results indicated that the pseudo second order adsorption was the predominant adsorption mechanism of acid scarlet 3R. Thus, the adsorption phenomenon was suggested as a chemical process. The adsorption data were fitted better with Langmuir model than Freundlich model, indicating that the adsorption of acid scarlet 3R belonged to the monolayer adsorption and mainly occurred in micropores.
文摘Proteins adsorption at solid surfaces are of paramount important for many natural processes. However, the role of specific water in influencing the adsorption process has not been well understood. We used molecular dynamics simulation to study the adsorption of BPTI on Au surface in three water environments (dielectric constant model, partial and full solvation models). The result shows that a fast and strong adsorption can occur in the dielectric environment, which leads to significant structure changes, as confirmed by great deviation from the crystal structure, largely spreading along the Au surface, rapid lose in all secondary structures and the great number of atoms in contact with the surface. Compared to the dielectric model, slower adsorption and fewer changes in the calculated properties above are observed in the partial solvation system since the specific water layer weakens the adsorption effects. However, in the partial solvation system, the adsorption of polar Au surface causes a significant decrease in the specific hydration around the protein, which still results in large structure changes similar to the dielectric system, but with much less adsorption extent. Enough water molecules in the full solvation system could allow the protein to rotate, and to large extent preserve the protein native structure, thus leading to the slowest and weakest adsorption. On the whole, the effects of non-specific and specific solvation on the protein structure and adsorption dynamics are significantly different, highlighting the importance of the specific water molecule in the protein adsorption.
基金supported by the National Natural Science Foundation of China(21307097,21105079)Industrial Research Project of Science and Technology Department of Shaanxi Province(2014K10-02,2012K08-18)+1 种基金the Fundamental Research Funds for the Central Universities(2012jdhz39)the Key Laboratory of Industrial Ecology and Environmental Engineering,Ministry of Education of China
文摘Conjugated microporous polymers(CMPs) have recently received extensive attention in oil/organic solvent-water separation field as a kind of ideal porous absorbents with tunable porosity, large surface areas, and super-hydrophobicity. However, reports on the application of CMPs in adsorption of hydrophilic contaminants from water are very few. In this work, we studied the adsorption of metronidazole(MNZ), a polar antibiotic, by two kinds of CMPs. The adsorption characteristics of MNZ by the CMPs, including adsorption kinetics, mechanism, and isotherm parameters were calculated. The adsorption kinetics of MNZ was well expressed by the pseudo-second-order model, and the adsorption process was found to be mainly controlled by film diffusion. The adsorption isotherm data agreed well with the Langmuir isotherm model, and the values of free energy E indicated that the adsorption nature of MNZ on the CMPs was physisorption. Increasing dispersion degree of the CMPs in MNZ solution resulted in greater adsorption. This work may provide fundamental guidance for the removal of antibiotics by CMPs.