Phosphoric acid obtained by the wet process is laden with impurities which limit its use in fertilizers. To expand its range of use, various methods have been proposed to purify it which range from simple fading-clari...Phosphoric acid obtained by the wet process is laden with impurities which limit its use in fertilizers. To expand its range of use, various methods have been proposed to purify it which range from simple fading-clarification to more complex operations. These processes include essentially the liquid-liquid extraction, chemical precipitation, ion flotation, adsorption on activated carbon, ion exchange resins. However, the use of these techniques is limited to a number of disadvantages such as high operational cost, environmental pollution, complicated process, limited effectiveness, etc.. Our contribution for this domain (purification of wet-phosphoric acid) consists to use clays which could be adsorbent materials alternative to both economic and less polluting. These are phyllosilicates which have a large adsorption capacity due to their large specific surface and their surface charge. In this study, we will detail the processes which present great importance for the treatment of wet phosphoric acid.展开更多
Recently, it has been reported that physisorbed adsorbates can be trapped between the bottom surface of twodimensional(2D) materials and supported substrate to form2 D confined films. However, the influence of such 2D...Recently, it has been reported that physisorbed adsorbates can be trapped between the bottom surface of twodimensional(2D) materials and supported substrate to form2 D confined films. However, the influence of such 2D confined adsorbates on the properties of 2D materials is rarely explored. Herein, we combined atomic force microscopy(AFM), Kelvin probe force microscopy(KPFM) and Raman spectroscopy especially the ultralow frequency(ULF) Raman spectroscopy to explore the influence of 2D confined organic adlayer thickness on the ULF breathing modes of few-layer MoS2 and WSe2nanosheets. As the thickness of organic adlayers increased, red shift, coexistence of blue and red shifts as well as blue shift of ULF breathing mode was observed. KPFM measurement confirmed the enhanced n-doping and p-doping behaviors of organic adlayers as their thickness increased,respectively. Our results will provide new insights into the interaction between 2D confined adsorbates and bottom surface of 2D nanosheets, which could be useful for modulating properties of 2D materials.展开更多
文摘Phosphoric acid obtained by the wet process is laden with impurities which limit its use in fertilizers. To expand its range of use, various methods have been proposed to purify it which range from simple fading-clarification to more complex operations. These processes include essentially the liquid-liquid extraction, chemical precipitation, ion flotation, adsorption on activated carbon, ion exchange resins. However, the use of these techniques is limited to a number of disadvantages such as high operational cost, environmental pollution, complicated process, limited effectiveness, etc.. Our contribution for this domain (purification of wet-phosphoric acid) consists to use clays which could be adsorbent materials alternative to both economic and less polluting. These are phyllosilicates which have a large adsorption capacity due to their large specific surface and their surface charge. In this study, we will detail the processes which present great importance for the treatment of wet phosphoric acid.
基金supported by the National Natural Science Foundation of China (21571101 and 51322202)the Natural Science Foundation of Jiangsu Province in China (BK20161543 and BK20130927)+1 种基金the Joint Research Fund for Overseas Chinese, Hong Kong and Macao Scholars (51528201)Natural Science Foundation of Jiangsu Higher Education Institutions of China (15KJB430016)
文摘Recently, it has been reported that physisorbed adsorbates can be trapped between the bottom surface of twodimensional(2D) materials and supported substrate to form2 D confined films. However, the influence of such 2D confined adsorbates on the properties of 2D materials is rarely explored. Herein, we combined atomic force microscopy(AFM), Kelvin probe force microscopy(KPFM) and Raman spectroscopy especially the ultralow frequency(ULF) Raman spectroscopy to explore the influence of 2D confined organic adlayer thickness on the ULF breathing modes of few-layer MoS2 and WSe2nanosheets. As the thickness of organic adlayers increased, red shift, coexistence of blue and red shifts as well as blue shift of ULF breathing mode was observed. KPFM measurement confirmed the enhanced n-doping and p-doping behaviors of organic adlayers as their thickness increased,respectively. Our results will provide new insights into the interaction between 2D confined adsorbates and bottom surface of 2D nanosheets, which could be useful for modulating properties of 2D materials.