Natural adsorbents such as banana pseudostem can play a vital role in the removal of heavy metal elements from wastewater. Major water resources and chemical industries have been encountering difficulties in re- movin...Natural adsorbents such as banana pseudostem can play a vital role in the removal of heavy metal elements from wastewater. Major water resources and chemical industries have been encountering difficulties in re- moving heavy metal elements using available conventional methods. This work demonstrates the potential to treat various effluents utilizing natural materials. A characterization of banana pseudostem powder was performed using environmental scanning electron microscopy (ESEM) and Fourier-transform infrared (FTIR) spectroscopy before and after the adsorption of lead(Ⅱ). Experiments were carried out using a batch process for the removal of lead(Ⅱ) from an aqueous solution. The effects of the adsorption kinetics were studied by altering various parameters such as initial pH, adsorbent dosage, initial lead ion concentration, and contact time. The results show that the point of zero charge (PZC) for the banana pseudostem powder was achieved at a pH of 5.5. The experimental data were analyzed using isotherm and kinetic models. The adsorption of lead(Ⅱ) onto banana pseudostem powder was fitted using the Langmuir adsorption isotherm. The adsorp- tion capacity was found to be 34.21 mg·g-1, and the pseudo second-order kinetic model showed the best fit. The optimum conditions were found using response surface methodology. The maximum removal was found to be 89%.展开更多
Batch adsorption experiments were carried out for the removal of methylene blue (MB) from aqueous solution using attapulgite as adsorbent. The effects of various parameters such as temperature, contact time, the pH va...Batch adsorption experiments were carried out for the removal of methylene blue (MB) from aqueous solution using attapulgite as adsorbent. The effects of various parameters such as temperature, contact time, the pH value, and attapulgite dosage on the adsorption performance were investigated. The standard curve and regression equation were established by spectrophotometry. The adsorption experimental results showed that the adsorption equilibrium data were well in accord with Langmuir adsorptive model. The optimal result was acquired under the experimental condition of attapulgite dosage 0.18g, MB concentration 50.0mg/L, pH 10, and adsorption time 20min at room temperature.展开更多
Adsorption isotherm is the most fundamental information related to chromatography. To calculate the parameters of Langmuir ad-sorption isotherm of thymidine, frontal analysis (FA) and elution-curve method (ECM) were a...Adsorption isotherm is the most fundamental information related to chromatography. To calculate the parameters of Langmuir ad-sorption isotherm of thymidine, frontal analysis (FA) and elution-curve method (ECM) were adopted in reversed-phase high performance liguid chromatography (RP-HPLC). In FA, the concentration of stationary phase was measured from the elution curves and the isotherm was deter-mined by regression analysis, while the parameters by ECM were obtained by parameter optimization. The adsorption isotherms of thymidine from the two methods were very similar. The superiority of ECM over FA was that the consumption of sample was less and only one or two in-jections of sample were required.展开更多
A series of sisal based activated carbon fibers were prepared with steam activation at temperature from 750℃ to 900℃. Their pore structures were characterized through their nitrogen adsorption isotherms at 77K using...A series of sisal based activated carbon fibers were prepared with steam activation at temperature from 750℃ to 900℃. Their pore structures were characterized through their nitrogen adsorption isotherms at 77K using different theories. The results showed that t-plot method and DR-plot method could suitably be used to characterize the mesopore structure and the multi-stage distribution of pore size of activated carbon fibers. It also showed that the pore size widens with the increase of activation temperature.展开更多
The objective of this study was to DTPA (complexion agent) and a sequential extraction procedure, and adsorption-desorption isotherm (competitive) evaluate the mobility and distribution of Fe, Zn, Mn, Cu, Cd, Ni, ...The objective of this study was to DTPA (complexion agent) and a sequential extraction procedure, and adsorption-desorption isotherm (competitive) evaluate the mobility and distribution of Fe, Zn, Mn, Cu, Cd, Ni, and Pb using the in surface samples of five soil great groups differing in their physicochemical properties. For determining heavy metal adsorption and desorption capacities of soil samples, six different concentrations (0, 2.5, 5, 10, 15 and 20 mg Lt) were used in a laboratory experiment with tree replications. An analytical procedure involving sequential chemical extractions has been used for partitioning of heavy metals into five fractions. Sorption isotherms were characterized using linear, Frendlich and Langmuir equations. The results indicated that the selective sequences of the metal adsorption based on the distribution coefficient was Pb〉Cu〉Ni〉Cd〉Zn〉Mn〉Fe and Pb, Cu, and Ni are the most strongly sorbed metals by these soils, whereas Cd, Zn and Mn are the least sorbed ones. The total adsorbed amount of these metals on the studied soils was well described by Langmuir equation. Calciorthid had the highset Pb, Cu, Ni, Cd, Zn, Mn, and Fe adsorption, and the sequences followed order Fluvaquent〉Argiustoll〉Pellustert〉Haplustept of the studied soil.展开更多
基金印度Siddaganga Institute of Technology化学工程和生物技术系的支持~~
文摘Natural adsorbents such as banana pseudostem can play a vital role in the removal of heavy metal elements from wastewater. Major water resources and chemical industries have been encountering difficulties in re- moving heavy metal elements using available conventional methods. This work demonstrates the potential to treat various effluents utilizing natural materials. A characterization of banana pseudostem powder was performed using environmental scanning electron microscopy (ESEM) and Fourier-transform infrared (FTIR) spectroscopy before and after the adsorption of lead(Ⅱ). Experiments were carried out using a batch process for the removal of lead(Ⅱ) from an aqueous solution. The effects of the adsorption kinetics were studied by altering various parameters such as initial pH, adsorbent dosage, initial lead ion concentration, and contact time. The results show that the point of zero charge (PZC) for the banana pseudostem powder was achieved at a pH of 5.5. The experimental data were analyzed using isotherm and kinetic models. The adsorption of lead(Ⅱ) onto banana pseudostem powder was fitted using the Langmuir adsorption isotherm. The adsorp- tion capacity was found to be 34.21 mg·g-1, and the pseudo second-order kinetic model showed the best fit. The optimum conditions were found using response surface methodology. The maximum removal was found to be 89%.
文摘Batch adsorption experiments were carried out for the removal of methylene blue (MB) from aqueous solution using attapulgite as adsorbent. The effects of various parameters such as temperature, contact time, the pH value, and attapulgite dosage on the adsorption performance were investigated. The standard curve and regression equation were established by spectrophotometry. The adsorption experimental results showed that the adsorption equilibrium data were well in accord with Langmuir adsorptive model. The optimal result was acquired under the experimental condition of attapulgite dosage 0.18g, MB concentration 50.0mg/L, pH 10, and adsorption time 20min at room temperature.
文摘Adsorption isotherm is the most fundamental information related to chromatography. To calculate the parameters of Langmuir ad-sorption isotherm of thymidine, frontal analysis (FA) and elution-curve method (ECM) were adopted in reversed-phase high performance liguid chromatography (RP-HPLC). In FA, the concentration of stationary phase was measured from the elution curves and the isotherm was deter-mined by regression analysis, while the parameters by ECM were obtained by parameter optimization. The adsorption isotherms of thymidine from the two methods were very similar. The superiority of ECM over FA was that the consumption of sample was less and only one or two in-jections of sample were required.
基金Natural Science Foundation Committee of Chinese government (grant No. 50073029) and by Guangdong Provincial Natural Science Foundation (001276)
文摘A series of sisal based activated carbon fibers were prepared with steam activation at temperature from 750℃ to 900℃. Their pore structures were characterized through their nitrogen adsorption isotherms at 77K using different theories. The results showed that t-plot method and DR-plot method could suitably be used to characterize the mesopore structure and the multi-stage distribution of pore size of activated carbon fibers. It also showed that the pore size widens with the increase of activation temperature.
文摘The objective of this study was to DTPA (complexion agent) and a sequential extraction procedure, and adsorption-desorption isotherm (competitive) evaluate the mobility and distribution of Fe, Zn, Mn, Cu, Cd, Ni, and Pb using the in surface samples of five soil great groups differing in their physicochemical properties. For determining heavy metal adsorption and desorption capacities of soil samples, six different concentrations (0, 2.5, 5, 10, 15 and 20 mg Lt) were used in a laboratory experiment with tree replications. An analytical procedure involving sequential chemical extractions has been used for partitioning of heavy metals into five fractions. Sorption isotherms were characterized using linear, Frendlich and Langmuir equations. The results indicated that the selective sequences of the metal adsorption based on the distribution coefficient was Pb〉Cu〉Ni〉Cd〉Zn〉Mn〉Fe and Pb, Cu, and Ni are the most strongly sorbed metals by these soils, whereas Cd, Zn and Mn are the least sorbed ones. The total adsorbed amount of these metals on the studied soils was well described by Langmuir equation. Calciorthid had the highset Pb, Cu, Ni, Cd, Zn, Mn, and Fe adsorption, and the sequences followed order Fluvaquent〉Argiustoll〉Pellustert〉Haplustept of the studied soil.