Humic substances constitute the major organic fractions of soils, sediments and natural waters, and play a dominant role in the binding, mobilization, transport and ultimate fate of organic contaminants in subsurface ...Humic substances constitute the major organic fractions of soils, sediments and natural waters, and play a dominant role in the binding, mobilization, transport and ultimate fate of organic contaminants in subsurface systems. In this paper, two humic acid samples, Guanting and Tianjin, with different origin and chemical compositions have been investigated with AFM imaging for their adsorption and aggregation behaviors on mica. While the Tianjin humic sample is found to form small spheres with 250 to 330 nm in diameter at lower concentrations, irregular loop-chain assemblies of hundreds of nanometer in diameter with the chain width of about 40 nm are dominant for the Guanting humic sample, which may attribute to the more polar aliphatic fractions in the chemical composition in the latter. The heterogeneous and polydisperse nature of humic substances with multiple structural features, such as sponge-like structures, perforated sheets, aggregate of spheres, branches and chain-like assemblies etc., is apparent at higher concentrations for both humic samples, showing morphologically new evidence for the dominant view of the humic dual-mode sorption model. With naphthalene introduced, the assemblies of Guanting humic substances clearly become more compact with significantly narrowed branches and less porous the perforated sheet-like structures. It is indica- tive of that smaller nanometer scale rings present along the perforated assemblies could potentially represent hydrophobic domains, which may facilitate the adsorption and aggregation of naphthalene onto the natural particle surfaces and therefore lead to an important role of dissolved humic sub- stances in the sorption of environmental pollutants.展开更多
Al-doped ZnO (AZO) nanocrystalline aggregates (NCAs) were prepared by a low cost colloid chemistry method and effects of the Al-doped concentration on the morphological and structural properties of the AZO NCAs were s...Al-doped ZnO (AZO) nanocrystalline aggregates (NCAs) were prepared by a low cost colloid chemistry method and effects of the Al-doped concentration on the morphological and structural properties of the AZO NCAs were studied. The dye adsorption ability of the AZO NCAs with various Al-doped concentrations was also investigated. Results indicate that the doping of the Al ions not only does not change the wurtzite structure of the ZnO crystal but also can reduce the crystallite grain size and the particle size distribution of the NCAs, which gives them a higher specific surface area and dye adsorption ability than that of the ZnO NCAs. The as-prepared AZO NCAs would be a promising material to be applied in the dye sensitized solar cells and water treatment.展开更多
基金This research was supported by the National Natural Science Foundation of China (Grant Nos. 20037010 and 20277042).
文摘Humic substances constitute the major organic fractions of soils, sediments and natural waters, and play a dominant role in the binding, mobilization, transport and ultimate fate of organic contaminants in subsurface systems. In this paper, two humic acid samples, Guanting and Tianjin, with different origin and chemical compositions have been investigated with AFM imaging for their adsorption and aggregation behaviors on mica. While the Tianjin humic sample is found to form small spheres with 250 to 330 nm in diameter at lower concentrations, irregular loop-chain assemblies of hundreds of nanometer in diameter with the chain width of about 40 nm are dominant for the Guanting humic sample, which may attribute to the more polar aliphatic fractions in the chemical composition in the latter. The heterogeneous and polydisperse nature of humic substances with multiple structural features, such as sponge-like structures, perforated sheets, aggregate of spheres, branches and chain-like assemblies etc., is apparent at higher concentrations for both humic samples, showing morphologically new evidence for the dominant view of the humic dual-mode sorption model. With naphthalene introduced, the assemblies of Guanting humic substances clearly become more compact with significantly narrowed branches and less porous the perforated sheet-like structures. It is indica- tive of that smaller nanometer scale rings present along the perforated assemblies could potentially represent hydrophobic domains, which may facilitate the adsorption and aggregation of naphthalene onto the natural particle surfaces and therefore lead to an important role of dissolved humic sub- stances in the sorption of environmental pollutants.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z218)the National Natural Science Foundation of China (Grant No. 90923012)
文摘Al-doped ZnO (AZO) nanocrystalline aggregates (NCAs) were prepared by a low cost colloid chemistry method and effects of the Al-doped concentration on the morphological and structural properties of the AZO NCAs were studied. The dye adsorption ability of the AZO NCAs with various Al-doped concentrations was also investigated. Results indicate that the doping of the Al ions not only does not change the wurtzite structure of the ZnO crystal but also can reduce the crystallite grain size and the particle size distribution of the NCAs, which gives them a higher specific surface area and dye adsorption ability than that of the ZnO NCAs. The as-prepared AZO NCAs would be a promising material to be applied in the dye sensitized solar cells and water treatment.