The dissociative electron attachment process for CHCl3 at different electric field have been studied with nitrogen as drift and carrier gas using corona discharge ionization source ion mobility spectrometry (CD-IMS)...The dissociative electron attachment process for CHCl3 at different electric field have been studied with nitrogen as drift and carrier gas using corona discharge ionization source ion mobility spectrometry (CD-IMS). The corresponding electron attachment rate constants varied from 1.26×10-8 cm3/(molecules s) to 8.24×10-9 cm3/(molecules s) as the electric field changed from 200 V/cm to 500 V/cm. At a fixed electric field in the drift region, the attachment rate constants are also detected at different sample concentration. The ionmolecule reaction rate constants for the further reaction between Cl^- and CHCl3 are also detected, which indicates that the technique maybe becomes a new method to research the rate constants between ions and neural molecules. And the reaction rate constants between Cl- and CHCl3 are the first time detected using CD-IMS.展开更多
The exploration of efficient and earth‐rich electrocatalysts for electrochemical reactions is critical to the implementation of large‐scale green energy conversion and storage techniques.Two‐dimensional(2D)material...The exploration of efficient and earth‐rich electrocatalysts for electrochemical reactions is critical to the implementation of large‐scale green energy conversion and storage techniques.Two‐dimensional(2D)materials with distinctive structural and electrochemical properties provide fertile soil for researchers to harvest basic science and emerging applications,which can be divided into metal‐free materials(such as graphene,carbon nitride and black phosphorus)and transition metal‐based materials(such as halogenides,phosphates,oxides,hydroxides,and MXenes).For faultless 2D materials,they usually exhibit poor electrochemical hydrogen evolution reaction(HER)activity because only edge sites can be available while the base surface is chemically inactive.Defect engineering is an effective strategy to generate active sites in 2D materials for improving electrocatalytic activity.This review presents feasible design strategies for constructing defect sites(including edge defects,vacancy defects and dopant derived defects)in 2D materials to improve their HER performance.The essential relationships between defect structures and electrocatalytic HER performance are discussed in detail,providing valuable guidance for rationally fabricating efficient HER electrocatalysts.The hydrogen adsorption/desorption energy can be optimized by constructing defect sites at different locations and by adjusting the local electronic structure to form unsaturated coordination states for efficient HER.展开更多
Dissociative adsorption of HCl on Au(111)has become one of unsolved puzzles in surface chemistry.Despite tremendous efforts in the past years,varioustheoretical models still greatly overestimate the zero-coverage init...Dissociative adsorption of HCl on Au(111)has become one of unsolved puzzles in surface chemistry.Despite tremendous efforts in the past years,varioustheoretical models still greatly overestimate the zero-coverage initial sticking probabilities(So).To find the origin of the large experiment-theory discrepancy,we have revisited the dissociative adsorption of HCl on Au(111)with a newly designed molecular beam-surface apparatus.The zero-coverage So derived from Cl-coverage measurements with varying HCl doses agree well with previous ones.However,we notice a sharp change of the coverage/dose slope with the HCl dosage at the low coverage regime,which may result in some uncertainties to the fitted So value.This seems consistent with a coverage-dependence of the dissociation barrier predicted by density functional theory at low Cl-coverages.Our results reveal the potential inconsistency of utilizing simulations with finite coverage to compare against experimental data with zero coverage in this system,and provide guidance for improving both experiment and theory in this regard.展开更多
基金ACKNOWLEDGMENTS The work was support by the National Natural Science Foundation of China (No.20707025 and No.20907054) and the Excellent Youth Foundation of Anhui Province Scientific Committee (No.06045098).
文摘The dissociative electron attachment process for CHCl3 at different electric field have been studied with nitrogen as drift and carrier gas using corona discharge ionization source ion mobility spectrometry (CD-IMS). The corresponding electron attachment rate constants varied from 1.26×10-8 cm3/(molecules s) to 8.24×10-9 cm3/(molecules s) as the electric field changed from 200 V/cm to 500 V/cm. At a fixed electric field in the drift region, the attachment rate constants are also detected at different sample concentration. The ionmolecule reaction rate constants for the further reaction between Cl^- and CHCl3 are also detected, which indicates that the technique maybe becomes a new method to research the rate constants between ions and neural molecules. And the reaction rate constants between Cl- and CHCl3 are the first time detected using CD-IMS.
文摘The exploration of efficient and earth‐rich electrocatalysts for electrochemical reactions is critical to the implementation of large‐scale green energy conversion and storage techniques.Two‐dimensional(2D)materials with distinctive structural and electrochemical properties provide fertile soil for researchers to harvest basic science and emerging applications,which can be divided into metal‐free materials(such as graphene,carbon nitride and black phosphorus)and transition metal‐based materials(such as halogenides,phosphates,oxides,hydroxides,and MXenes).For faultless 2D materials,they usually exhibit poor electrochemical hydrogen evolution reaction(HER)activity because only edge sites can be available while the base surface is chemically inactive.Defect engineering is an effective strategy to generate active sites in 2D materials for improving electrocatalytic activity.This review presents feasible design strategies for constructing defect sites(including edge defects,vacancy defects and dopant derived defects)in 2D materials to improve their HER performance.The essential relationships between defect structures and electrocatalytic HER performance are discussed in detail,providing valuable guidance for rationally fabricating efficient HER electrocatalysts.The hydrogen adsorption/desorption energy can be optimized by constructing defect sites at different locations and by adjusting the local electronic structure to form unsaturated coordination states for efficient HER.
基金supported by the National Natural Science Foundation of China(No.22173042,No.21973037,No.22073089,and No.22327801)the In-novation program for Quantum Science and Technolo-gy(No.2021ZD0303304)+2 种基金the Guangdong Science and Technology Program(No.2019ZT08L455 and No.2019JC01X091)the Shenzhen Science and Technology Program(No.ZDSYS2020421111001787)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0450101).
文摘Dissociative adsorption of HCl on Au(111)has become one of unsolved puzzles in surface chemistry.Despite tremendous efforts in the past years,varioustheoretical models still greatly overestimate the zero-coverage initial sticking probabilities(So).To find the origin of the large experiment-theory discrepancy,we have revisited the dissociative adsorption of HCl on Au(111)with a newly designed molecular beam-surface apparatus.The zero-coverage So derived from Cl-coverage measurements with varying HCl doses agree well with previous ones.However,we notice a sharp change of the coverage/dose slope with the HCl dosage at the low coverage regime,which may result in some uncertainties to the fitted So value.This seems consistent with a coverage-dependence of the dissociation barrier predicted by density functional theory at low Cl-coverages.Our results reveal the potential inconsistency of utilizing simulations with finite coverage to compare against experimental data with zero coverage in this system,and provide guidance for improving both experiment and theory in this regard.