2D carbon ribbon/Al_(2)O_(3) was synthesized with two-dimensional metal organic frameworks 2D-MOFs as precursors using the solvothermal and calcination methods.Batch experiments of adsorption parameters such as pH,liq...2D carbon ribbon/Al_(2)O_(3) was synthesized with two-dimensional metal organic frameworks 2D-MOFs as precursors using the solvothermal and calcination methods.Batch experiments of adsorption parameters such as pH,liquid/solid ratio,adsorption kinetics,adsorption thermodynamics,and anions competitions were investigated to understand the adsorptive behavior of fluoride on carbon ribbon/Al_(2)O_(3) and nitrogen-doped carbon ribbon/Al_(2)O_(3).The adsorption of fluoride on carbon ribbon/Al_(2)O_(3) could be described as the chemical and multilayer adsorption,while the adsorption of fluoride on nitrogen-doped carbon ribbon/Al_(2)O_(3) followed the chemical and monolayer adsorption phenomenon.The fluoride on nitrogen-doped carbon ribbon/Al_(2)O_(3) had a much faster adsorption rate of 3.1×10^(−7) m/s than carbon ribbon/Al_(2)O_(3),which was 1.2×10^(−7) m/s.The nitrogen-doping on carbon ribbon enhances structural defects and improves the adsorption performance of fluoride.Also,the diacetylene linkages(—C≡C—)and pyridinic-N were studied to understand their influences on removing fluoride.The result indicates that carbon ribbon and nitrogen-doped ribbon could serve as good adsorbents for removing fluoride.展开更多
Lanthanum alginate bead is a new, highly active adsorbent. In the present study, we investigated its ad- sorption performance and its adsorption mechanism. The adsorption isotherm for fluoride onto lanthanum alginate ...Lanthanum alginate bead is a new, highly active adsorbent. In the present study, we investigated its ad- sorption performance and its adsorption mechanism. The adsorption isotherm for fluoride onto lanthanum alginate b ead fits the Langmuir model well, and the maximum adsorption capacity is 197.2 mg·g-1. X-ray diffraction shows the amorphous nature of lanthanum alginate bead, which allows for better accessibility to fluoride and thus better activity. Infrared spectra of lanthanum alginate bead before and after adsorption confirm its stable skeletal structure. Scanning electron microscopy shows that the dense surface structure of the adsorbent appear cracks after adsorption. T he adsorption mechanism of lanthanum alginate bead is considered as an ion exchange between F- and Cl- or OH-, as verified from the adsorbent and the solution by pH effect, energy dispersive X-ray, and ion chromatography.展开更多
The study was designed to investigate the use of two sorbents namely(i) Fe3O4 nanoparticles immobilized in sodium alginate matrix(FNPSA) and(ii) Fe3O4 nanoparticles and saponified orange peel residue immobilized in so...The study was designed to investigate the use of two sorbents namely(i) Fe3O4 nanoparticles immobilized in sodium alginate matrix(FNPSA) and(ii) Fe3O4 nanoparticles and saponified orange peel residue immobilized in sodium alginate matrix(FNPSOPR) as sorbents for fluoride removal from contaminated water. The synthesized nanoparticles were analyzed and characterized by dynamic light scattering, X-ray diffraction, vibrating sample magnetometry, and scanning electron microscopy with energy dispersive X-ray spectroscopy and Fourier transform-infrared spectrometry. The sorbent matrices were prepared in the form of beads and surface functionalized to enable enhanced sorption of fluoride ions. Batch sorption studies were carried out and the sorption isotherm and reaction kinetics were analyzed. Both the sorbents followed Langmuir model of isotherm and fitted well with Pseudo first order reaction. The maximum sorption capacity exhibited by FNPSA and FNPSOPR was58.24 mg·g-1and 80.33 mg·g-1respectively. Five sorption–desorption cycles exhibited 100%, 97.56%, 94.53%,83.21%, and 76.53% of regeneration of FNPSOPR. Accordingly, it is demonstrated that FNSOPR could be used as a promising sorbent for easy and efficient removal of fluoride from contaminated water with good reusability.The current work suggests a simple and effective method to remove fluoride from contaminated water.展开更多
基金the financial supports from the Key R&D Program of Hunan Province,China(No.2018SK2026)the National Key R&D Program of China(No.2018YFC1802204)the National Natural Science Foundation of China(No.51634010).
文摘2D carbon ribbon/Al_(2)O_(3) was synthesized with two-dimensional metal organic frameworks 2D-MOFs as precursors using the solvothermal and calcination methods.Batch experiments of adsorption parameters such as pH,liquid/solid ratio,adsorption kinetics,adsorption thermodynamics,and anions competitions were investigated to understand the adsorptive behavior of fluoride on carbon ribbon/Al_(2)O_(3) and nitrogen-doped carbon ribbon/Al_(2)O_(3).The adsorption of fluoride on carbon ribbon/Al_(2)O_(3) could be described as the chemical and multilayer adsorption,while the adsorption of fluoride on nitrogen-doped carbon ribbon/Al_(2)O_(3) followed the chemical and monolayer adsorption phenomenon.The fluoride on nitrogen-doped carbon ribbon/Al_(2)O_(3) had a much faster adsorption rate of 3.1×10^(−7) m/s than carbon ribbon/Al_(2)O_(3),which was 1.2×10^(−7) m/s.The nitrogen-doping on carbon ribbon enhances structural defects and improves the adsorption performance of fluoride.Also,the diacetylene linkages(—C≡C—)and pyridinic-N were studied to understand their influences on removing fluoride.The result indicates that carbon ribbon and nitrogen-doped ribbon could serve as good adsorbents for removing fluoride.
基金Supported by the Major National Science and Technology Special Project on Treatment and Control of Water Pollution(2009ZX07425-006)State Key Laboratory of Environmental Simulation and Pollution Control (09K04ESPCT)
文摘Lanthanum alginate bead is a new, highly active adsorbent. In the present study, we investigated its ad- sorption performance and its adsorption mechanism. The adsorption isotherm for fluoride onto lanthanum alginate b ead fits the Langmuir model well, and the maximum adsorption capacity is 197.2 mg·g-1. X-ray diffraction shows the amorphous nature of lanthanum alginate bead, which allows for better accessibility to fluoride and thus better activity. Infrared spectra of lanthanum alginate bead before and after adsorption confirm its stable skeletal structure. Scanning electron microscopy shows that the dense surface structure of the adsorbent appear cracks after adsorption. T he adsorption mechanism of lanthanum alginate bead is considered as an ion exchange between F- and Cl- or OH-, as verified from the adsorbent and the solution by pH effect, energy dispersive X-ray, and ion chromatography.
基金the management of VIT University for their support in research and Defence Metallurgical Research Laboratory, DRDO, Hyderabad for helping in VSM analysis
文摘The study was designed to investigate the use of two sorbents namely(i) Fe3O4 nanoparticles immobilized in sodium alginate matrix(FNPSA) and(ii) Fe3O4 nanoparticles and saponified orange peel residue immobilized in sodium alginate matrix(FNPSOPR) as sorbents for fluoride removal from contaminated water. The synthesized nanoparticles were analyzed and characterized by dynamic light scattering, X-ray diffraction, vibrating sample magnetometry, and scanning electron microscopy with energy dispersive X-ray spectroscopy and Fourier transform-infrared spectrometry. The sorbent matrices were prepared in the form of beads and surface functionalized to enable enhanced sorption of fluoride ions. Batch sorption studies were carried out and the sorption isotherm and reaction kinetics were analyzed. Both the sorbents followed Langmuir model of isotherm and fitted well with Pseudo first order reaction. The maximum sorption capacity exhibited by FNPSA and FNPSOPR was58.24 mg·g-1and 80.33 mg·g-1respectively. Five sorption–desorption cycles exhibited 100%, 97.56%, 94.53%,83.21%, and 76.53% of regeneration of FNPSOPR. Accordingly, it is demonstrated that FNSOPR could be used as a promising sorbent for easy and efficient removal of fluoride from contaminated water with good reusability.The current work suggests a simple and effective method to remove fluoride from contaminated water.