We report herein a highly selective method for directly determining the trace Co^2+in highly concentrated zinc electrolyte.This novel method is based on a second derivative wave of catalytic adsorptive polarography ge...We report herein a highly selective method for directly determining the trace Co^2+in highly concentrated zinc electrolyte.This novel method is based on a second derivative wave of catalytic adsorptive polarography generated by complexing Co^2+with dimethylglyoxime and nitrite onto a dropping mercury electrode.By employing a medium with NH3-NH4Cl buffer,DMG and NaNO2 during determining the trace Co^2+,any interferences of highly concentrated Zn^2+and other coexisting metal ions in the electrolyte are completely eliminated due to the selective masking effect of EDTA.When the concentration of Co^2+is within 1.0×10^–10–3.2×10^–7 mol/L range,it shows a good linear relationship with the current peak.Detection limit is 1.0×10^–11 mol/L,and RSD≤2.7%for six successive assays.We have compared the efficiency of the current method to that obtained by cobalt nitroso-R-salt spectrophotometry,and the absolute values of relative deviations are≤4.2%.The method developed and described herein has been successfully employed in determining the trace Co2+in actual zinc electrolyte.展开更多
Photocatalytic activity of doped polyaniline nanopowders with different molar ratio of An/O (aniline^oxidizer) has been studied in the process of photocatalytic decolorization of aqueous solutions of methylene blue....Photocatalytic activity of doped polyaniline nanopowders with different molar ratio of An/O (aniline^oxidizer) has been studied in the process of photocatalytic decolorization of aqueous solutions of methylene blue. By means of scanning electron microscopy and low-temperature N2 adsorption method, it was found that doped PANI (polyaniline) nanopowders have the particles size of 30-50 nm with the specific surface area of 20-35 m2.g"~. It was found that PANI photocatalytic activity essentially depends on molar ratio of An/O and adsorption interactions between the dye molecules and catalytic active centers on PANI surface and these interactions are greatly affected by pH of the solution 9.2. An optimum of the synergetic effect is found for an initial molar ratio of aniline to oxidizer equal to 0.8.展开更多
基金Projects(61533021,61773403)supported by the National Natural Science Foundation of China
文摘We report herein a highly selective method for directly determining the trace Co^2+in highly concentrated zinc electrolyte.This novel method is based on a second derivative wave of catalytic adsorptive polarography generated by complexing Co^2+with dimethylglyoxime and nitrite onto a dropping mercury electrode.By employing a medium with NH3-NH4Cl buffer,DMG and NaNO2 during determining the trace Co^2+,any interferences of highly concentrated Zn^2+and other coexisting metal ions in the electrolyte are completely eliminated due to the selective masking effect of EDTA.When the concentration of Co^2+is within 1.0×10^–10–3.2×10^–7 mol/L range,it shows a good linear relationship with the current peak.Detection limit is 1.0×10^–11 mol/L,and RSD≤2.7%for six successive assays.We have compared the efficiency of the current method to that obtained by cobalt nitroso-R-salt spectrophotometry,and the absolute values of relative deviations are≤4.2%.The method developed and described herein has been successfully employed in determining the trace Co2+in actual zinc electrolyte.
文摘Photocatalytic activity of doped polyaniline nanopowders with different molar ratio of An/O (aniline^oxidizer) has been studied in the process of photocatalytic decolorization of aqueous solutions of methylene blue. By means of scanning electron microscopy and low-temperature N2 adsorption method, it was found that doped PANI (polyaniline) nanopowders have the particles size of 30-50 nm with the specific surface area of 20-35 m2.g"~. It was found that PANI photocatalytic activity essentially depends on molar ratio of An/O and adsorption interactions between the dye molecules and catalytic active centers on PANI surface and these interactions are greatly affected by pH of the solution 9.2. An optimum of the synergetic effect is found for an initial molar ratio of aniline to oxidizer equal to 0.8.