Effects of citrate and tartrate on phosphate adsorption and desorption from kaolinite, goethite, amorphous Al-oxide and Ultisol were studied. P adsorption was significantly decreased as the concentration of the organi...Effects of citrate and tartrate on phosphate adsorption and desorption from kaolinite, goethite, amorphous Al-oxide and Ultisol were studied. P adsorption was significantly decreased as the concentration of the organic anions increased from 10-5 to 10-1 M. At 0.1 M and pH 7.0, tartrate decreased P adsorption by 27.6% - 50.6% and citrate by 37.9 - 80.4%, depending on the kinds of adsorbent. Little Al and/ or Fe were detected in the equilibrium solutions, even at the highest concentration of the organic anions. Effects of the organic anions on phosphate adsorption follow essentially the competitive adsorption mechanism.The selectivity coefficients for competitive adsorption can be used to compare the effectiveness of different organic anions in reducing P adsorption under given conditions.Phosphate desorption was increased by 3 to 100 times in the presence of 0.001 M citrate or tartrate compared to that in 0.02 M KC1 solution alone. However, for all the soil and clay minerals studied the amount of P desorbed by citrate or tartrate was generally lower than or close to that of isotopically exchangeable P. The effect of organic anions on phosphate desorption arises primarily from ligand exchange.展开更多
Surface charge, secondary adsorption- desorption and form distribution of Cu2+ and Zn2+ in Ultisols and Alfisols having adsorbed phosphate were studied by potentiometric titration, adsorption equilibrium and sequentia...Surface charge, secondary adsorption- desorption and form distribution of Cu2+ and Zn2+ in Ultisols and Alfisols having adsorbed phosphate were studied by potentiometric titration, adsorption equilibrium and sequential extraction method, respectively. The soil surface negative charges increased whereas the amount of positive charges decreased with increase of P adsorbed. The soil secondary adsorption capacity for Cu2+ and Zn2+ was positively significantly correlated with the amount of P adsorbed by the soils, which could be described by the Langmuir equation. The amounts of Cu2+ and Zn2+ desorption from soils were decreased after P adsorption by the soils and the relationship between them was linear. After the soils adsorbed P, form distribution of Cu2+ and Zn2+ in soils changed remarforbly.展开更多
The adsorption properties of phenol on XDA-1 resin were studied by chemical analysis and IR spectrometry.The statically saturated adsorption capacity,dynamic saturated adsorption capacity,apparent activation energy,th...The adsorption properties of phenol on XDA-1 resin were studied by chemical analysis and IR spectrometry.The statically saturated adsorption capacity,dynamic saturated adsorption capacity,apparent activation energy,thermodynamic parameters,and adsorption rate constants were measured at different temperatures.As a result,adsorption of phenol on the resin obeys the Freundlich formula.And phenol was recovered quantitatively when ethanol,acetone or 1.0 mol/L sodium hydroxide were used to desorb it from the column.展开更多
In this paper, the adsorption-desorption variations of trivalent La, Ce, Y and mixed rare earths are discussed. The curves of pH-rare earth element adsorption were very well fitted to the equation: InD =a+b pH. The se...In this paper, the adsorption-desorption variations of trivalent La, Ce, Y and mixed rare earths are discussed. The curves of pH-rare earth element adsorption were very well fitted to the equation: InD =a+b pH. The selectivity of RE (rare earth element) ions by the samples decreased in the following order: Ce> RE> La> Y, but the sequences were: La> Ce> Y on kaolinite and Y> La on amorphous iron oxide. Since the trivalent RE ions existed in the form of RE(OH)2+ in the solutions from pH < 5.45 to 7.0, the ratio of H+ displaced to RE3+ adsorbed in micromole was proposed to be about 2. The specific adsorption mechanism for RE was proposed to be that the RE ions complexed with oxide surface and the ion-surface complex of Ce3+ promoted oxidization on Mn hydroxide.展开更多
Radiotracer techniques were employed to characterize 65Zn adsorption and desorption in root-cell-wall of hyperac-cumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) species of Sedum alfredii Hance. The res...Radiotracer techniques were employed to characterize 65Zn adsorption and desorption in root-cell-wall of hyperac-cumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) species of Sedum alfredii Hance. The results indicated that at the end of a 30 min short time radioisotope loading period, comparable amounts of 65Zn were accumulated in the roots of the two ecotypes Sedum alfredii, whereas 2.1-fold more 65Zn remains in NHE root after 45-min desorption. At the end of 60 min uptake period, no difference of 65Zn accumulation was observed in undesorbed root-cell-wall of Sedum alfredii. However, 3.0-fold more 65Zn accumulated in desorbed root-cell-wall of NHE. Zn2+ binding in root-cell-wall preparations of NHE was greater than that in HE under high Zn2+ concentration. All these results suggested that root-cell-wall of the two ecotypes Sedum alfredii had the same ability to adsorb Zn2+, whereas the desorption characteristics were different, and with most of 65Zn binding on root of HE being available for loading into the xylem, as a result, more 65Zn was translocated to the shoot.展开更多
A field test with the traditional rotation of paddy rice/upland crop (wheat) was carried out on a paddysoil derived from red earth to elucidate the effect of organic manure on the phosphorus adsorption-desorptionby so...A field test with the traditional rotation of paddy rice/upland crop (wheat) was carried out on a paddysoil derived from red earth to elucidate the effect of organic manure on the phosphorus adsorption-desorptionby soil and its P availability Soil samples were taken from different treatments at rice harvesting stage andanalysed. The isothermal adsorption of P by the samples fitted very well with Langmuir equation, and hence,the parameters in the equation, i.e., maximum adsoaption (qm), constant related to bonding energy (k) andtheir product (k x qm) could be used as a comprehensive index to characterize the potential P adsorptivityof the soil.Organo-inorganic fertilization and organic manuring conld decrease qm and k, while mineral P appli-cation had little effect on them. The isothermal desorption of P was significantly correlated with initiallyadded and isothermally adsorbed P. Part of P added was fixed, which represented the P fixation capacityof soil, and organic manuring could obviously lower the P fixation. The content of soil available P had asignificant negative correlation with qm, k and fixed P. It is concluded that organic manure could increase theP availability of paddy soil derived from red earth by decreasing qm, k, maximum buffering capacity (MBC=k x qm) and fixation capacity.展开更多
Adsorption and desorption of exogenous rare earth elements (REE) in soils were studied.Results showed that soils had strong adsorbability for REE and the rate of adsorption of REE was over 95% of the added REE in thes...Adsorption and desorption of exogenous rare earth elements (REE) in soils were studied.Results showed that soils had strong adsorbability for REE and the rate of adsorption of REE was over 95% of the added REE in these tests.The characteristics of adsorption isotherms corresponded well with the both Freundlich and Temkin equations,but deviated from the Langmuir equation.The adsorption of REE tended to increase with the rising of soil pH.A sequential extraction method used for studing the desorption and distribution of REE sorbed in soils are also discussed.展开更多
The adsorption and desorption of algae Cladophora fascicularis and their relation with initial Cd2+ concentration, initial pH, and co-existing ions were studied. Adsorption equilibrium and biosorption kinetics were es...The adsorption and desorption of algae Cladophora fascicularis and their relation with initial Cd2+ concentration, initial pH, and co-existing ions were studied. Adsorption equilibrium and biosorption kinetics were established from batch experiments. The adsorption equilibrium was adequately described by the Langmuir isotherm, and biosorption kinetics was in pseudo-second order model. The experiment on co-existing ions showed that the biosorption capacity of biomass decreased with an increasing concentration of competing ions. Desorption experiments indicated that EDTA was efficient desorbent for recovery from Cd2+. With high capacities of metal biosorption and desorption, the biomass of Cladophora fascicularis is promising as a cost-effective biosorbent for the removal of Cd2+ from wastewater.展开更多
A system of polar ordered resins was established for purification of chlorogenic acid in Flos Lonicerae. It was composed of three reversed phase resins, AB-8, DM-130 and NKA-9, representative for their gradually incre...A system of polar ordered resins was established for purification of chlorogenic acid in Flos Lonicerae. It was composed of three reversed phase resins, AB-8, DM-130 and NKA-9, representative for their gradually increased polarity and selectivity. A method of RP-HPLC was used for determination of chlorogenic acid. And the performance of adsorption and desorption for chlorogenic acid with the system of polar ordered resins was studied. Furthermore, the effects of concentration, pH and flow rate of the adsorbate on adsorption ability were researched. It is indicated that the optimum parameters for chlorogenic acid are as follows: pH 3.5 with a flow rate of 2.5 BVh, the concentration of extract solution at 0.50, 0.40, 0.30 gL respectively for the adsorptive operation twice, and 6.93, 8.66, 10.39 molL ethanol used as gradient eluants. The purity of resulted product of chlorogenic acid arrives 70.20% with yield of 89.79%. With simple procedures, low costs and high purity product, the method of system of polar ordered resins followed by sequential reversed phase separations can be used to refine the chlorogenic acid in the extraction of Flos Lonicerae.展开更多
The study about the adsorption of phosphate on four variable charge soils and some minerals revealed that two stage adsorption appeared in the adsorption isotherms of phosphate on 4 soils and there was a maximum adsor...The study about the adsorption of phosphate on four variable charge soils and some minerals revealed that two stage adsorption appeared in the adsorption isotherms of phosphate on 4 soils and there was a maximum adsorption on Al-oxide-typed surfaces between pH 3.5 to pH 5.5 as suspension pH changed from 2 to 9, but the adsorption amount of phosphate decreased continually as pH rose on Fe-oxide typed surfaces. The adsorption amount of phosphate and the maximum phosphate adsorption pH decreased in the order of yellow-red soil > lateritic red soil > red soil > paddy soil, which was coincided with the content order of amorphous Al oxide. The removement of organic matter and Fe oxide made the maximum phosphate adsorption pH rise from 4.0 to 5.0 and 4.5, respectively. The desorption curves with pH of four soils showed that phosphate desorbed least at pH 5. Generally the desorption was contrary to the adsorption with pH changing. There was a good accordance between adsorption or desorption and the concentration of Al in the suspension. The possible mechanisms of phosphate adsorption are discussed.展开更多
Alkanolamines are widely used in the purification of the sourgas sweetening process. During the sour gas absorption process, CO_2 significantly degrades the amine solvent and creates enormous problems for plant operat...Alkanolamines are widely used in the purification of the sourgas sweetening process. During the sour gas absorption process, CO_2 significantly degrades the amine solvent and creates enormous problems for plant operation. In this work, CO_2 induced degradation of aqueous diethanolamine(DEA) solution was conducted in a 1.25 L jacketed glass reactor that functioned as an absorber and stripper at atmospheric conditions. Pure CO_2 was bubbled through the reactor until the solution became saturated. In this study, the concentrations of DEA used were in the range of concentrations between 2 mol·L^(-1) and 4 mol·L^(-1). In the degradation experiment, six generic cycles were conducted for each run. Each cycle was configured with the absorption and desorption of carbon dioxide at 55 ℃ and 100 ℃, respectively. Samples were collected after a predetermined experimental time and analyzed by ion chromatography(IC) to identify unknown ionic degradation products(DGPs). In the IC analysis, three different columns were used for anion, cation and ion exclusion systems, which are Metrosep A Supp 5150/4.0, Metrosep C Supp 4 150/4.0 and Metrosep Organic Acids, respectively. The major identified DGPs of D01 DEA2 M, D02 DEA3 M, and D03 DEA4 M are nitrite, acetate and ammonium. Phosphate product was found in the degraded amine samples which might be due to the contamination of water or chromatographic system.展开更多
Moisture adsorption-desorption tests (MATs) were conducted on simulated mural plaster specimens under different air temperatures (ATs) and relative humidity (RH) to investigate the possible effect of seasonal alterati...Moisture adsorption-desorption tests (MATs) were conducted on simulated mural plaster specimens under different air temperatures (ATs) and relative humidity (RH) to investigate the possible effect of seasonal alteration and visitors’ breath on the deterioration of Mogao Grottoes, Dunhuang, China. Saturated salt solutions were used to maintain a constant RH, and plant growth cabinets were used to maintain a constant or varying temperature in the simulation test. The weight of specimen was periodically measured to determine the adsorbed or desorbed moisture. Test data illustrate that the desorption process is far quicker than the adsorption one, indicating that it is possible to inhibit the disadvantage effect from visitors, such as shortening the staying time in caves. In case of high humidity, an accumulated moisture adsorption was found to correspond to the varying temperature. On the other hand, in case of low humidity, accumulated moisture desorption corresponded. Test data imply that opening caves more often to visitors in humid seasons should be avoided so as to prevent continuous wetting of wall paintings.展开更多
文摘Effects of citrate and tartrate on phosphate adsorption and desorption from kaolinite, goethite, amorphous Al-oxide and Ultisol were studied. P adsorption was significantly decreased as the concentration of the organic anions increased from 10-5 to 10-1 M. At 0.1 M and pH 7.0, tartrate decreased P adsorption by 27.6% - 50.6% and citrate by 37.9 - 80.4%, depending on the kinds of adsorbent. Little Al and/ or Fe were detected in the equilibrium solutions, even at the highest concentration of the organic anions. Effects of the organic anions on phosphate adsorption follow essentially the competitive adsorption mechanism.The selectivity coefficients for competitive adsorption can be used to compare the effectiveness of different organic anions in reducing P adsorption under given conditions.Phosphate desorption was increased by 3 to 100 times in the presence of 0.001 M citrate or tartrate compared to that in 0.02 M KC1 solution alone. However, for all the soil and clay minerals studied the amount of P desorbed by citrate or tartrate was generally lower than or close to that of isotopically exchangeable P. The effect of organic anions on phosphate desorption arises primarily from ligand exchange.
基金Project (No. 49871043) supported by the National Natural Science Foundation of China.
文摘Surface charge, secondary adsorption- desorption and form distribution of Cu2+ and Zn2+ in Ultisols and Alfisols having adsorbed phosphate were studied by potentiometric titration, adsorption equilibrium and sequential extraction method, respectively. The soil surface negative charges increased whereas the amount of positive charges decreased with increase of P adsorbed. The soil secondary adsorption capacity for Cu2+ and Zn2+ was positively significantly correlated with the amount of P adsorbed by the soils, which could be described by the Langmuir equation. The amounts of Cu2+ and Zn2+ desorption from soils were decreased after P adsorption by the soils and the relationship between them was linear. After the soils adsorbed P, form distribution of Cu2+ and Zn2+ in soils changed remarforbly.
基金Natural Science Foundation of Zhejiang Province of China(No.Y3090531)
文摘The adsorption properties of phenol on XDA-1 resin were studied by chemical analysis and IR spectrometry.The statically saturated adsorption capacity,dynamic saturated adsorption capacity,apparent activation energy,thermodynamic parameters,and adsorption rate constants were measured at different temperatures.As a result,adsorption of phenol on the resin obeys the Freundlich formula.And phenol was recovered quantitatively when ethanol,acetone or 1.0 mol/L sodium hydroxide were used to desorb it from the column.
文摘In this paper, the adsorption-desorption variations of trivalent La, Ce, Y and mixed rare earths are discussed. The curves of pH-rare earth element adsorption were very well fitted to the equation: InD =a+b pH. The selectivity of RE (rare earth element) ions by the samples decreased in the following order: Ce> RE> La> Y, but the sequences were: La> Ce> Y on kaolinite and Y> La on amorphous iron oxide. Since the trivalent RE ions existed in the form of RE(OH)2+ in the solutions from pH < 5.45 to 7.0, the ratio of H+ displaced to RE3+ adsorbed in micromole was proposed to be about 2. The specific adsorption mechanism for RE was proposed to be that the RE ions complexed with oxide surface and the ion-surface complex of Ce3+ promoted oxidization on Mn hydroxide.
基金Project supported by the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0536), the National Natural Science Foundation of China (No. 20277035), and the Post-doctoral Science Foundation of China (No. 2005038285)
文摘Radiotracer techniques were employed to characterize 65Zn adsorption and desorption in root-cell-wall of hyperac-cumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) species of Sedum alfredii Hance. The results indicated that at the end of a 30 min short time radioisotope loading period, comparable amounts of 65Zn were accumulated in the roots of the two ecotypes Sedum alfredii, whereas 2.1-fold more 65Zn remains in NHE root after 45-min desorption. At the end of 60 min uptake period, no difference of 65Zn accumulation was observed in undesorbed root-cell-wall of Sedum alfredii. However, 3.0-fold more 65Zn accumulated in desorbed root-cell-wall of NHE. Zn2+ binding in root-cell-wall preparations of NHE was greater than that in HE under high Zn2+ concentration. All these results suggested that root-cell-wall of the two ecotypes Sedum alfredii had the same ability to adsorb Zn2+, whereas the desorption characteristics were different, and with most of 65Zn binding on root of HE being available for loading into the xylem, as a result, more 65Zn was translocated to the shoot.
文摘A field test with the traditional rotation of paddy rice/upland crop (wheat) was carried out on a paddysoil derived from red earth to elucidate the effect of organic manure on the phosphorus adsorption-desorptionby soil and its P availability Soil samples were taken from different treatments at rice harvesting stage andanalysed. The isothermal adsorption of P by the samples fitted very well with Langmuir equation, and hence,the parameters in the equation, i.e., maximum adsoaption (qm), constant related to bonding energy (k) andtheir product (k x qm) could be used as a comprehensive index to characterize the potential P adsorptivityof the soil.Organo-inorganic fertilization and organic manuring conld decrease qm and k, while mineral P appli-cation had little effect on them. The isothermal desorption of P was significantly correlated with initiallyadded and isothermally adsorbed P. Part of P added was fixed, which represented the P fixation capacityof soil, and organic manuring could obviously lower the P fixation. The content of soil available P had asignificant negative correlation with qm, k and fixed P. It is concluded that organic manure could increase theP availability of paddy soil derived from red earth by decreasing qm, k, maximum buffering capacity (MBC=k x qm) and fixation capacity.
基金Project partly supported by the Japan International Science and Technology Exchange Center.
文摘Adsorption and desorption of exogenous rare earth elements (REE) in soils were studied.Results showed that soils had strong adsorbability for REE and the rate of adsorption of REE was over 95% of the added REE in these tests.The characteristics of adsorption isotherms corresponded well with the both Freundlich and Temkin equations,but deviated from the Langmuir equation.The adsorption of REE tended to increase with the rising of soil pH.A sequential extraction method used for studing the desorption and distribution of REE sorbed in soils are also discussed.
基金Supported by 863 Program (No.2006AA06Z362)NSFC (No. 30530080)National Science & Technology Pillar Program (No. 2006BAB03A12)
文摘The adsorption and desorption of algae Cladophora fascicularis and their relation with initial Cd2+ concentration, initial pH, and co-existing ions were studied. Adsorption equilibrium and biosorption kinetics were established from batch experiments. The adsorption equilibrium was adequately described by the Langmuir isotherm, and biosorption kinetics was in pseudo-second order model. The experiment on co-existing ions showed that the biosorption capacity of biomass decreased with an increasing concentration of competing ions. Desorption experiments indicated that EDTA was efficient desorbent for recovery from Cd2+. With high capacities of metal biosorption and desorption, the biomass of Cladophora fascicularis is promising as a cost-effective biosorbent for the removal of Cd2+ from wastewater.
基金Project(2005A20303002) supported by the Science and Technology Plan Item of Guangdong Province, ChinaProject(2006J1-C0251) supported by the Science and Technology Bureau Foundation of Guangzhou, China
文摘A system of polar ordered resins was established for purification of chlorogenic acid in Flos Lonicerae. It was composed of three reversed phase resins, AB-8, DM-130 and NKA-9, representative for their gradually increased polarity and selectivity. A method of RP-HPLC was used for determination of chlorogenic acid. And the performance of adsorption and desorption for chlorogenic acid with the system of polar ordered resins was studied. Furthermore, the effects of concentration, pH and flow rate of the adsorbate on adsorption ability were researched. It is indicated that the optimum parameters for chlorogenic acid are as follows: pH 3.5 with a flow rate of 2.5 BVh, the concentration of extract solution at 0.50, 0.40, 0.30 gL respectively for the adsorptive operation twice, and 6.93, 8.66, 10.39 molL ethanol used as gradient eluants. The purity of resulted product of chlorogenic acid arrives 70.20% with yield of 89.79%. With simple procedures, low costs and high purity product, the method of system of polar ordered resins followed by sequential reversed phase separations can be used to refine the chlorogenic acid in the extraction of Flos Lonicerae.
文摘The study about the adsorption of phosphate on four variable charge soils and some minerals revealed that two stage adsorption appeared in the adsorption isotherms of phosphate on 4 soils and there was a maximum adsorption on Al-oxide-typed surfaces between pH 3.5 to pH 5.5 as suspension pH changed from 2 to 9, but the adsorption amount of phosphate decreased continually as pH rose on Fe-oxide typed surfaces. The adsorption amount of phosphate and the maximum phosphate adsorption pH decreased in the order of yellow-red soil > lateritic red soil > red soil > paddy soil, which was coincided with the content order of amorphous Al oxide. The removement of organic matter and Fe oxide made the maximum phosphate adsorption pH rise from 4.0 to 5.0 and 4.5, respectively. The desorption curves with pH of four soils showed that phosphate desorbed least at pH 5. Generally the desorption was contrary to the adsorption with pH changing. There was a good accordance between adsorption or desorption and the concentration of Al in the suspension. The possible mechanisms of phosphate adsorption are discussed.
基金the Ministry of Science,Technology and Innovation,Malaysia(MOSTI),for funding the project:RG003/09AET as well as the University of Malaya for allowing full access to several key laboratories to perform experimental work
文摘Alkanolamines are widely used in the purification of the sourgas sweetening process. During the sour gas absorption process, CO_2 significantly degrades the amine solvent and creates enormous problems for plant operation. In this work, CO_2 induced degradation of aqueous diethanolamine(DEA) solution was conducted in a 1.25 L jacketed glass reactor that functioned as an absorber and stripper at atmospheric conditions. Pure CO_2 was bubbled through the reactor until the solution became saturated. In this study, the concentrations of DEA used were in the range of concentrations between 2 mol·L^(-1) and 4 mol·L^(-1). In the degradation experiment, six generic cycles were conducted for each run. Each cycle was configured with the absorption and desorption of carbon dioxide at 55 ℃ and 100 ℃, respectively. Samples were collected after a predetermined experimental time and analyzed by ion chromatography(IC) to identify unknown ionic degradation products(DGPs). In the IC analysis, three different columns were used for anion, cation and ion exclusion systems, which are Metrosep A Supp 5150/4.0, Metrosep C Supp 4 150/4.0 and Metrosep Organic Acids, respectively. The major identified DGPs of D01 DEA2 M, D02 DEA3 M, and D03 DEA4 M are nitrite, acetate and ammonium. Phosphate product was found in the degraded amine samples which might be due to the contamination of water or chromatographic system.
基金Project supported by the National Key Technology R&D Program during the 11th Five-Year Plan of China (No. 2006BAK30B02)the China National Engineering Research Center for Conservation of Ancient Wall Paintings Program (No. 200806)
文摘Moisture adsorption-desorption tests (MATs) were conducted on simulated mural plaster specimens under different air temperatures (ATs) and relative humidity (RH) to investigate the possible effect of seasonal alteration and visitors’ breath on the deterioration of Mogao Grottoes, Dunhuang, China. Saturated salt solutions were used to maintain a constant RH, and plant growth cabinets were used to maintain a constant or varying temperature in the simulation test. The weight of specimen was periodically measured to determine the adsorbed or desorbed moisture. Test data illustrate that the desorption process is far quicker than the adsorption one, indicating that it is possible to inhibit the disadvantage effect from visitors, such as shortening the staying time in caves. In case of high humidity, an accumulated moisture adsorption was found to correspond to the varying temperature. On the other hand, in case of low humidity, accumulated moisture desorption corresponded. Test data imply that opening caves more often to visitors in humid seasons should be avoided so as to prevent continuous wetting of wall paintings.