The adsorption of uranium(Ⅵ)on the manganese oxide coated zeolite(MOCZ)from aqueous solution was investigated in a fixed-bed column.The experiments were conducted to investigate the effects of bed height,flow rate,pa...The adsorption of uranium(Ⅵ)on the manganese oxide coated zeolite(MOCZ)from aqueous solution was investigated in a fixed-bed column.The experiments were conducted to investigate the effects of bed height,flow rate,particle size,initial concentration of uranium(Ⅵ),initial pH,presence of salt and competitive ions.The U-uptake by MOCZ increased with initial uranium(Ⅵ)concentration and bed height,but decreased as the flow rate and particle size increased.In the presence of salt and competitive ions,the breakthrough time was shorter.The adsorption capacity reached a maximum at pH of 6.3.The Thomas model was applied to the experimental data to determine the characteristic parameters of the column for process design using linear regression.The breakthrough curves calculated from the model were in good agreement with the experimental data.The BDST model was used to study the influence of bed height on the adsorption of uranium(Ⅵ).Desorption of uranium(Ⅵ)in the MOCZ column was investigated.The column could be used for at least four adsorption-desorption cycles using 0.1mol.L-1 NaHCO3 solution as the elution.After desorption and regeneration with deionized water,MOCZ could be reused to adsorb uranium(Ⅵ)at a comparable capacity.Compared to raw zeolite,MOCZ showed better capacity for uranium(Ⅵ)removal.展开更多
The removal of cadmium, copper, and zinc from aqueous solution using activated carbon impregnated with 8-Hydroxyquinoline (oxine) was investigated in this study. The study was conducted using a completely mixed batc...The removal of cadmium, copper, and zinc from aqueous solution using activated carbon impregnated with 8-Hydroxyquinoline (oxine) was investigated in this study. The study was conducted using a completely mixed batch technique. Quantitative evaluation of the experimental results showed that the adsorption capacity of oxine impregnated activated carbon was higher than that of the virgin activated carbon for the three heavy metals. For oxine impregnated activated carbon, the Freundlieh distribution coefficient, kd , values were 23, 100, and 104 times larger than those of the virgin activated carbon for cadmium, copper, and zinc, respectively. Moreover, for oxine impregnated activated carbon, the kd values followed the sequence Cu 〉 Zn 〉 Cd which aggress well with the stability constants reported in the literature for the complexation of the three heavy metals with 8-Hydroxyquinoline.展开更多
[Objective] The paper was to study the dynamic adsorption of microwave modified attapulgite on micro-polluted phenol wastewater. [Method] Cetyl trimethyl ammonium bromide (CATB) modified attapulgite was used to modi...[Objective] The paper was to study the dynamic adsorption of microwave modified attapulgite on micro-polluted phenol wastewater. [Method] Cetyl trimethyl ammonium bromide (CATB) modified attapulgite was used to modify attapulgite, and conducted dynamic test on micro-polluted phenol wastewater. The dynamic charac- teristics of phenol removal were also studied. [Result] Attapulgite modified by CATB has strong adsorption ability on phenol in micro-polluted water, the phenol removal rate increased with the decrease of flow rate of wastewater. When pH value was 6- 8, phenol concentration in wastewater was 17.74 mg/L, flow rate was 2 m/s and ad- sorption time was 25 rain, the removal rate reached 93.07%. The modified atta- pulgite could be regenerated with alkali, and its adsorption ability after regeneration had no obvious decline. The dynamic adsorption process of phenol accorded with the first-order kinetic equation. [Conclusion] The study provided basis for further study on "organic matter removal in wastewater.展开更多
基金Supported by the National Science Foundation for Postdoctoral Sciemists of China (20070420811) and the Science and Technology Department of Henan Province in China (200510459016).
文摘The adsorption of uranium(Ⅵ)on the manganese oxide coated zeolite(MOCZ)from aqueous solution was investigated in a fixed-bed column.The experiments were conducted to investigate the effects of bed height,flow rate,particle size,initial concentration of uranium(Ⅵ),initial pH,presence of salt and competitive ions.The U-uptake by MOCZ increased with initial uranium(Ⅵ)concentration and bed height,but decreased as the flow rate and particle size increased.In the presence of salt and competitive ions,the breakthrough time was shorter.The adsorption capacity reached a maximum at pH of 6.3.The Thomas model was applied to the experimental data to determine the characteristic parameters of the column for process design using linear regression.The breakthrough curves calculated from the model were in good agreement with the experimental data.The BDST model was used to study the influence of bed height on the adsorption of uranium(Ⅵ).Desorption of uranium(Ⅵ)in the MOCZ column was investigated.The column could be used for at least four adsorption-desorption cycles using 0.1mol.L-1 NaHCO3 solution as the elution.After desorption and regeneration with deionized water,MOCZ could be reused to adsorb uranium(Ⅵ)at a comparable capacity.Compared to raw zeolite,MOCZ showed better capacity for uranium(Ⅵ)removal.
文摘The removal of cadmium, copper, and zinc from aqueous solution using activated carbon impregnated with 8-Hydroxyquinoline (oxine) was investigated in this study. The study was conducted using a completely mixed batch technique. Quantitative evaluation of the experimental results showed that the adsorption capacity of oxine impregnated activated carbon was higher than that of the virgin activated carbon for the three heavy metals. For oxine impregnated activated carbon, the Freundlieh distribution coefficient, kd , values were 23, 100, and 104 times larger than those of the virgin activated carbon for cadmium, copper, and zinc, respectively. Moreover, for oxine impregnated activated carbon, the kd values followed the sequence Cu 〉 Zn 〉 Cd which aggress well with the stability constants reported in the literature for the complexation of the three heavy metals with 8-Hydroxyquinoline.
基金Supported by Innovation Fund Project of Ministry of Science and Technology(10C26213201183)~~
文摘[Objective] The paper was to study the dynamic adsorption of microwave modified attapulgite on micro-polluted phenol wastewater. [Method] Cetyl trimethyl ammonium bromide (CATB) modified attapulgite was used to modify attapulgite, and conducted dynamic test on micro-polluted phenol wastewater. The dynamic charac- teristics of phenol removal were also studied. [Result] Attapulgite modified by CATB has strong adsorption ability on phenol in micro-polluted water, the phenol removal rate increased with the decrease of flow rate of wastewater. When pH value was 6- 8, phenol concentration in wastewater was 17.74 mg/L, flow rate was 2 m/s and ad- sorption time was 25 rain, the removal rate reached 93.07%. The modified atta- pulgite could be regenerated with alkali, and its adsorption ability after regeneration had no obvious decline. The dynamic adsorption process of phenol accorded with the first-order kinetic equation. [Conclusion] The study provided basis for further study on "organic matter removal in wastewater.