The self-incompatibility ( S) loci from the Solanaceae, Rosaceae and Scrophulariaceae encode a class of ribonucleases, known as S RNases, which have been shown to control the pistil expression of self-incompatible rea...The self-incompatibility ( S) loci from the Solanaceae, Rosaceae and Scrophulariaceae encode a class of ribonucleases, known as S RNases, which have been shown to control the pistil expression of self-incompatible reaction. In the former two families, the S loci have been shown to be located near centromere. However, the chromosomal location of the S locus in Antirrhinum, a species of the Scrophulariaceae, is not known. To determine its chromosomal location and genomic organization, an S-2 RNase gene and its corresponding 63 kb BAC clone were separately used for fluorescence in situ hybridization (FISH) of mitotic metaphase chromosomes of a self-incompatible Antirrhinum line Of S2S5. The results showed that the S-2 RNase detected a doublet signal near the centromere of the smallest chromosome (2n = 16). Two separate doublet signals of the tested BAC sequence were shown on both sides of the centromeres of all eight pairs of the chromosomes, suggesting that the Antirrhinum S locus is located in a pericentromeric region. Furthermore, a retrotransposon, named RIS1 (retrotransposon in the S locus), which has not been identified yet in. Antirrhinum, was found next to S-2 RNase. Taken together, the centromeric location of the S locus from the three S-RNase-based self-incompatible families provides a further support on a common origin of their evolution as well as suppressed recombination.展开更多
Cyclin B1 is a key regulatory protein controlling cell cycle progression in vertebrates. Cyclin B1 binds CDK1, a cy-clin-dependent kinase catalytic subunit, forming a complex that orchestrates mitosis through phosphor...Cyclin B1 is a key regulatory protein controlling cell cycle progression in vertebrates. Cyclin B1 binds CDK1, a cy-clin-dependent kinase catalytic subunit, forming a complex that orchestrates mitosis through phosphorylation of key proteins. Cyclin B1 regulates both the activation of CDK1 and its subcellular localization, which may be critical for substrate selection. Here, we demonstrate that cyclin B1 is concentrated on the outer plate of the kinetochore during prometaphase. This localization requires the cyclin box region of the protein. Cyclin B1 is displaced from individual kinetochores to the spindle poles by microtubule attachment to the kinetochores, and this displacement is dependent on the dynein/dynactin complex. Depletion of cyclin B1 by vector-based siRNA causes inefficient attachment between kinetochores and microtubules, and chromosome alignment defects, and delays the onset of anaphase. We conclude that cyclin B1 accumulates at kinetochores during prometaphase, where it contributes to the correct attachment of mi- crotubules to kinetochores and efficient alignment of the chromosomes, most likely through localized phosphorylation of specific substrates by cyclin B1-CDK1. Cyclin B1 is then transported from each kinetochore as microtubule attachment is completed, and this relocalization may redirect the activity of cyclin B1-CDK1 and contribute to inactivation of the spindle assembly checkpoint.展开更多
Phaeodactylum tricornutum is one of the important marine diatoms for oceanic primary production. Its reproduction has profound significance in the life cycle; however, the nuclear behavior during its sexual reproducti...Phaeodactylum tricornutum is one of the important marine diatoms for oceanic primary production. Its reproduction has profound significance in the life cycle; however, the nuclear behavior during its sexual reproduction was not clear. In this study, we observed the nuclear transition and determined its correlation with cell conjunction. It was found that two cells jointed at their apices first and swung and aligned each other immediately, and nucleus from one cell was able to transfer into another one during cell conjugation. The cell pairs conjugated for nuclear transition were different from those formed in mitosis in hypovalve thickness and cellular arrangement. Our findings proved the existence of sexual reproduction in P. tricornutum.展开更多
The Kapchinsky Vladimirsky(K-V)beam through a hackle periodic-focusing magnetic field is studiedusing the particle-core model.The beam halo-chaos is found,and an idea of fraction power-law function controller ispropos...The Kapchinsky Vladimirsky(K-V)beam through a hackle periodic-focusing magnetic field is studiedusing the particle-core model.The beam halo-chaos is found,and an idea of fraction power-law function controller isproposed based on the mechanism of halo formation and the strategy of controlling halo-chaos.The method is appliedto the multi-particle simulation to control the halo.The numerical results show that the halo-chaos and its regenerationcan be eliminated effectively by using the fraction power-law function control method.At the same time,the radialparticle density is uniform at the beam's center as long as the control method and appropriate parameter are chosen.展开更多
The mitogen activated protein kinases-extracellular signal regulated kinases (MAPK-ERK) pathway is involved in regulation of multiple cellular processes including the cell cycle. In the present study using a Huh7 ce...The mitogen activated protein kinases-extracellular signal regulated kinases (MAPK-ERK) pathway is involved in regulation of multiple cellular processes including the cell cycle. In the present study using a Huh7 cell line Conl with an HCV replicon, we have shown that the MAPK-ERK pathway plays a significant role in the modulation of HCV replication and protein expression and might influence IFN-a signalling. Epithelial growth factor (EGF) was able to stimulate ERK activation and decreased HCV RNA load while a MAPK-ERK pathway inhibitor U0126 led to an elevated HCV RNA load and higher NS5A protein amounts in Conl cells. It could be further demonstrated that the inhibition of the MAPK-ERK pathway facilitated the translation directed by the HCV internal ribosome entry site. Consistently, a U0126 treatment enhanced activity of the HCV reporter replicon in transient transfeetion assays. Thus, the MAPK-ERK pathway plays an important role in the regulation of HCV gene expression and replication. In addition, cyclin-dependent kinases (CDKs) downstream of ERK may also be involved in the modulation of HCV replication since roscovitine, an inhibitor of CDKs had a similar effect to that of U0126. Modulation of the cell cycle progression by cell cycle inhibitor or RNAi resulted consistently in changes of HCV RNA levels. Further, the replication of HCV replicon in Conl cells was inhibited by IFN-~z. The inhibitory effect of IFN-CZ could be partly reversed by pre-incubation of Con-1 cells with inhibitors of the MAPK-ERK pathway and CDKs. It could be shown that the MAPK-ERK inhibitors are able to partially modulate the expression of interferon-stimulated genes.展开更多
Fibers are used in various areas for improving the performance of different materials, commonly used are synthetic fibers and glass fibers. More and more sustainable alternatives are required to reduce energy consumpt...Fibers are used in various areas for improving the performance of different materials, commonly used are synthetic fibers and glass fibers. More and more sustainable alternatives are required to reduce energy consumption and the carbon footprint. Traditional natural fibers (like hemp or flax) very often do not fulfill requirements for construction purposes like resistance to elevated temperature or lacking purity. Also mechanical properties of natural fibers are influenced by factors like harvesting, kink bands, climate and growth conditions. Lenzing AG has put a lot of efforts into developing a sustainable fiber overcoming the above mentioned issues. The raw material for TENCEL is wood, which is transformed into a fiber of pure cellulose in an economy friendly process as been proven by a life cycle assessment. The properties of a composite material are highly dependent on parameters like mechanical fiber properties, fiber diameter, quality of fiber dispersion and fiber matrix adhesion. Keeping these properties constant throughout the whole composite part is the factor to success. The diameter as well as the mechanical properties of TENCEL fibers is kept within a very narrow range thanks to the unique manufacturing process. It was shown that the fiber dispersion of TENCEL as well as the fiber matrix adhesion is better than for natural fibers.展开更多
Optimum conditions for in vitro production of interleukin 2 (IL 2) like activity from the Peripheral blood lymphocytes (PBL) of an Indian major carp, Labeo rohita were studied. Culture supernatants were generated ...Optimum conditions for in vitro production of interleukin 2 (IL 2) like activity from the Peripheral blood lymphocytes (PBL) of an Indian major carp, Labeo rohita were studied. Culture supernatants were generated by culturing the PBL in RPMI-1640 media supplemented with Glutamine and 10% fetal bovine serum (FBS) and stimulating with two different mitogens: concanavalin A (Con A) and Phytohaemagglutinin (PHA) at different concentrations separately. Significantly (P 〈 0.01) higher proliferation response was obtained from the culture supematant stimulated with concanavalin A (Con A) at a concentration of 10 lag mLl. The effect of phorbol myristate acetate (PMA) was also studied by co-stimulating PBL with Con A and PHA separately and it was found to synergistically enhancing the stimulation index with Con A whereas the stimulation index remain unchanged with PHA. The Con A (10 μg mLl) stimulated PBL were also cultured at different cell density, incubation period and incubation temperature in order to optimize the in vitro L. rohita IL2 production. The IL2 like activity was studied by lymphocyte proliferation assay on 72 h Con A blasts using WST based assay technique. Significantly (P 〈 0.01) higher stimulation indices were obtained when the PBL were cultured at a cell density of 1 × 10^6 cells mL^-1 for 30-36 h at an incubation temperature of 30 ℃. The IL2 like activity was purified by DEAE-Sepharose anion exchange chromatography and recorded between 70-130 mM NaCI with peak activity at 110 Mm NaCI. The molecular weight of the factor responsible for IL2 like activity was found to be 15-17 KD.展开更多
Orderly execution of two critical events during the cell cycle––DNA replication and chromosome segregation––ensures the stable transmission of genetic materials. The cohesin complex physically connects sister chro...Orderly execution of two critical events during the cell cycle––DNA replication and chromosome segregation––ensures the stable transmission of genetic materials. The cohesin complex physically connects sister chromatids during DNA replication in a process termed sister chromatid cohesion. Timely establishment and dissolution of sister chromatid cohesion is a prerequisite for accurate chromosome segregation, and is tight regulated by the cell cycle machinery and cohesin-associated proteins. In this review, we discuss recent progress in the molecular understanding of sister chromatid cohesion during the mitotic cell cycle.展开更多
文摘The self-incompatibility ( S) loci from the Solanaceae, Rosaceae and Scrophulariaceae encode a class of ribonucleases, known as S RNases, which have been shown to control the pistil expression of self-incompatible reaction. In the former two families, the S loci have been shown to be located near centromere. However, the chromosomal location of the S locus in Antirrhinum, a species of the Scrophulariaceae, is not known. To determine its chromosomal location and genomic organization, an S-2 RNase gene and its corresponding 63 kb BAC clone were separately used for fluorescence in situ hybridization (FISH) of mitotic metaphase chromosomes of a self-incompatible Antirrhinum line Of S2S5. The results showed that the S-2 RNase detected a doublet signal near the centromere of the smallest chromosome (2n = 16). Two separate doublet signals of the tested BAC sequence were shown on both sides of the centromeres of all eight pairs of the chromosomes, suggesting that the Antirrhinum S locus is located in a pericentromeric region. Furthermore, a retrotransposon, named RIS1 (retrotransposon in the S locus), which has not been identified yet in. Antirrhinum, was found next to S-2 RNase. Taken together, the centromeric location of the S locus from the three S-RNase-based self-incompatible families provides a further support on a common origin of their evolution as well as suppressed recombination.
文摘Cyclin B1 is a key regulatory protein controlling cell cycle progression in vertebrates. Cyclin B1 binds CDK1, a cy-clin-dependent kinase catalytic subunit, forming a complex that orchestrates mitosis through phosphorylation of key proteins. Cyclin B1 regulates both the activation of CDK1 and its subcellular localization, which may be critical for substrate selection. Here, we demonstrate that cyclin B1 is concentrated on the outer plate of the kinetochore during prometaphase. This localization requires the cyclin box region of the protein. Cyclin B1 is displaced from individual kinetochores to the spindle poles by microtubule attachment to the kinetochores, and this displacement is dependent on the dynein/dynactin complex. Depletion of cyclin B1 by vector-based siRNA causes inefficient attachment between kinetochores and microtubules, and chromosome alignment defects, and delays the onset of anaphase. We conclude that cyclin B1 accumulates at kinetochores during prometaphase, where it contributes to the correct attachment of mi- crotubules to kinetochores and efficient alignment of the chromosomes, most likely through localized phosphorylation of specific substrates by cyclin B1-CDK1. Cyclin B1 is then transported from each kinetochore as microtubule attachment is completed, and this relocalization may redirect the activity of cyclin B1-CDK1 and contribute to inactivation of the spindle assembly checkpoint.
基金supported by the State Basic Research and Development Program of China (973 Program) (2011-CB200901)the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(BS2010SW037)the Opening Research Project of Experimental Marine Biology Laboratory,Institute of Oceanology,Chinese Academy of Sciences
文摘Phaeodactylum tricornutum is one of the important marine diatoms for oceanic primary production. Its reproduction has profound significance in the life cycle; however, the nuclear behavior during its sexual reproduction was not clear. In this study, we observed the nuclear transition and determined its correlation with cell conjunction. It was found that two cells jointed at their apices first and swung and aligned each other immediately, and nucleus from one cell was able to transfer into another one during cell conjugation. The cell pairs conjugated for nuclear transition were different from those formed in mitosis in hypovalve thickness and cellular arrangement. Our findings proved the existence of sexual reproduction in P. tricornutum.
基金National Natural Science Foundation of China under Crant No.10247005the Natural Science Foundation of the Anhui Higher Education Institutions of China under Grant No.KJ2007B187the Scientific Research Foundation of China University Of Mining and Technology for the Young under Grant No.OK060119
文摘The Kapchinsky Vladimirsky(K-V)beam through a hackle periodic-focusing magnetic field is studiedusing the particle-core model.The beam halo-chaos is found,and an idea of fraction power-law function controller isproposed based on the mechanism of halo formation and the strategy of controlling halo-chaos.The method is appliedto the multi-particle simulation to control the halo.The numerical results show that the halo-chaos and its regenerationcan be eliminated effectively by using the fraction power-law function control method.At the same time,the radialparticle density is uniform at the beam's center as long as the control method and appropriate parameter are chosen.
基金supported by a joint grant of Chinese Academy of Science and Deutsche Akademische Austausch Dienstthe National Basic Research Priorities Program ofChina(2009CB522501,2005CB522901,2007CB512901)
文摘The mitogen activated protein kinases-extracellular signal regulated kinases (MAPK-ERK) pathway is involved in regulation of multiple cellular processes including the cell cycle. In the present study using a Huh7 cell line Conl with an HCV replicon, we have shown that the MAPK-ERK pathway plays a significant role in the modulation of HCV replication and protein expression and might influence IFN-a signalling. Epithelial growth factor (EGF) was able to stimulate ERK activation and decreased HCV RNA load while a MAPK-ERK pathway inhibitor U0126 led to an elevated HCV RNA load and higher NS5A protein amounts in Conl cells. It could be further demonstrated that the inhibition of the MAPK-ERK pathway facilitated the translation directed by the HCV internal ribosome entry site. Consistently, a U0126 treatment enhanced activity of the HCV reporter replicon in transient transfeetion assays. Thus, the MAPK-ERK pathway plays an important role in the regulation of HCV gene expression and replication. In addition, cyclin-dependent kinases (CDKs) downstream of ERK may also be involved in the modulation of HCV replication since roscovitine, an inhibitor of CDKs had a similar effect to that of U0126. Modulation of the cell cycle progression by cell cycle inhibitor or RNAi resulted consistently in changes of HCV RNA levels. Further, the replication of HCV replicon in Conl cells was inhibited by IFN-~z. The inhibitory effect of IFN-CZ could be partly reversed by pre-incubation of Con-1 cells with inhibitors of the MAPK-ERK pathway and CDKs. It could be shown that the MAPK-ERK inhibitors are able to partially modulate the expression of interferon-stimulated genes.
文摘Fibers are used in various areas for improving the performance of different materials, commonly used are synthetic fibers and glass fibers. More and more sustainable alternatives are required to reduce energy consumption and the carbon footprint. Traditional natural fibers (like hemp or flax) very often do not fulfill requirements for construction purposes like resistance to elevated temperature or lacking purity. Also mechanical properties of natural fibers are influenced by factors like harvesting, kink bands, climate and growth conditions. Lenzing AG has put a lot of efforts into developing a sustainable fiber overcoming the above mentioned issues. The raw material for TENCEL is wood, which is transformed into a fiber of pure cellulose in an economy friendly process as been proven by a life cycle assessment. The properties of a composite material are highly dependent on parameters like mechanical fiber properties, fiber diameter, quality of fiber dispersion and fiber matrix adhesion. Keeping these properties constant throughout the whole composite part is the factor to success. The diameter as well as the mechanical properties of TENCEL fibers is kept within a very narrow range thanks to the unique manufacturing process. It was shown that the fiber dispersion of TENCEL as well as the fiber matrix adhesion is better than for natural fibers.
文摘Optimum conditions for in vitro production of interleukin 2 (IL 2) like activity from the Peripheral blood lymphocytes (PBL) of an Indian major carp, Labeo rohita were studied. Culture supernatants were generated by culturing the PBL in RPMI-1640 media supplemented with Glutamine and 10% fetal bovine serum (FBS) and stimulating with two different mitogens: concanavalin A (Con A) and Phytohaemagglutinin (PHA) at different concentrations separately. Significantly (P 〈 0.01) higher proliferation response was obtained from the culture supematant stimulated with concanavalin A (Con A) at a concentration of 10 lag mLl. The effect of phorbol myristate acetate (PMA) was also studied by co-stimulating PBL with Con A and PHA separately and it was found to synergistically enhancing the stimulation index with Con A whereas the stimulation index remain unchanged with PHA. The Con A (10 μg mLl) stimulated PBL were also cultured at different cell density, incubation period and incubation temperature in order to optimize the in vitro L. rohita IL2 production. The IL2 like activity was studied by lymphocyte proliferation assay on 72 h Con A blasts using WST based assay technique. Significantly (P 〈 0.01) higher stimulation indices were obtained when the PBL were cultured at a cell density of 1 × 10^6 cells mL^-1 for 30-36 h at an incubation temperature of 30 ℃. The IL2 like activity was purified by DEAE-Sepharose anion exchange chromatography and recorded between 70-130 mM NaCI with peak activity at 110 Mm NaCI. The molecular weight of the factor responsible for IL2 like activity was found to be 15-17 KD.
基金supported by the Welch Foundation(I-1441 to H.Y.)the Clayton Foundation,and Cancer Prevention and Research Institute of Texas(RP110465-P3 and RP120717-P2 to H.Y.)
文摘Orderly execution of two critical events during the cell cycle––DNA replication and chromosome segregation––ensures the stable transmission of genetic materials. The cohesin complex physically connects sister chromatids during DNA replication in a process termed sister chromatid cohesion. Timely establishment and dissolution of sister chromatid cohesion is a prerequisite for accurate chromosome segregation, and is tight regulated by the cell cycle machinery and cohesin-associated proteins. In this review, we discuss recent progress in the molecular understanding of sister chromatid cohesion during the mitotic cell cycle.