The yellow granules in the gastral cuticle of the Oriental hornet Vespa oriental& (Hymenoptera, Vespinae) are located in yellow stripes. In the present study, we focus on the micromorphology and formation of the ye...The yellow granules in the gastral cuticle of the Oriental hornet Vespa oriental& (Hymenoptera, Vespinae) are located in yellow stripes. In the present study, we focus on the micromorphology and formation of the yellow granules from their inception to their spread in the regions which are destined to acquire a yellow color, The cuticle was observed with several methods of electron microscopy. The results showed that the yellow granules comprise a layer which is 20-25 μm thick, within the total cuticular thickness of 40-45 μm. In the mentioned regions one can see, from above, many apertures of about 0.5μm in diameter which extends into a peripheral photoreceptor cell. In each yellow granule, one discerns a myoid envelope inside which there are 9 fibrils arranged in a circle. Yellow granules maturation process involves infiltration of canals that give rise to the incipient ball-shaped primary granules which increase in number (as a result of continues budding off the walls of a canal) as the cuticle matures and transform into secondary barrel shaped granules, becoming elongated and then splitting into shorter barrels that fill up the entire area. Preliminary examinations have suggested liver-like function activity within the layer of yellow granules.展开更多
This article reviews my new optical fiber sensing (OFS) research activities in China for the last ten years at Chongqing University and University of Electronic Science and Technology of China, since I returned from...This article reviews my new optical fiber sensing (OFS) research activities in China for the last ten years at Chongqing University and University of Electronic Science and Technology of China, since I returned from UK in 1999. The research progress in long period fiber gratings (LPFGs), distributed fiber sensing systems and microfiber sensors is introduced. For LPFGs, the processing method with high-frequency CO2 laser pulses types of LPFGs fabricated and the related applications for both optical sensing and optical communication are described. For distributed fiber sensing systems, the fiber-optic polarization optical time domain reflectometer (POTDR), fiber-optic phase-sensitive optical time domain reflectometer (φ-OTDR) and Brillouin optical time-domain analyzer (BOTDA) are developed, respectively. For microfiber sensors, we mainly focus on the knot resonator and its application for sensing of the refractive index and acceleration, etc.展开更多
文摘The yellow granules in the gastral cuticle of the Oriental hornet Vespa oriental& (Hymenoptera, Vespinae) are located in yellow stripes. In the present study, we focus on the micromorphology and formation of the yellow granules from their inception to their spread in the regions which are destined to acquire a yellow color, The cuticle was observed with several methods of electron microscopy. The results showed that the yellow granules comprise a layer which is 20-25 μm thick, within the total cuticular thickness of 40-45 μm. In the mentioned regions one can see, from above, many apertures of about 0.5μm in diameter which extends into a peripheral photoreceptor cell. In each yellow granule, one discerns a myoid envelope inside which there are 9 fibrils arranged in a circle. Yellow granules maturation process involves infiltration of canals that give rise to the incipient ball-shaped primary granules which increase in number (as a result of continues budding off the walls of a canal) as the cuticle matures and transform into secondary barrel shaped granules, becoming elongated and then splitting into shorter barrels that fill up the entire area. Preliminary examinations have suggested liver-like function activity within the layer of yellow granules.
文摘This article reviews my new optical fiber sensing (OFS) research activities in China for the last ten years at Chongqing University and University of Electronic Science and Technology of China, since I returned from UK in 1999. The research progress in long period fiber gratings (LPFGs), distributed fiber sensing systems and microfiber sensors is introduced. For LPFGs, the processing method with high-frequency CO2 laser pulses types of LPFGs fabricated and the related applications for both optical sensing and optical communication are described. For distributed fiber sensing systems, the fiber-optic polarization optical time domain reflectometer (POTDR), fiber-optic phase-sensitive optical time domain reflectometer (φ-OTDR) and Brillouin optical time-domain analyzer (BOTDA) are developed, respectively. For microfiber sensors, we mainly focus on the knot resonator and its application for sensing of the refractive index and acceleration, etc.