The pressure pulsation induced by the pumped periodic pulsation fluid is the main factor of causing fluid resonance and stimulating pipelines vibrations and noise. In order to reduce the f...The pressure pulsation induced by the pumped periodic pulsation fluid is the main factor of causing fluid resonance and stimulating pipelines vibrations and noise. In order to reduce the faults caused by the vibrations of pipelines, two aspects have been researched: one is to develop high quality filters, weaken and restrain the crest of pulsation pressure; the other is to design structural parameters of the piping network and eliminate the fluid resonance. Both need calculating the pressure pulsations of different structural parameters and frequencies, and knowing the amplitude frequency. In this paper the stiffness matrix technique is used for treating the coupling of subsystems of pipelines and calculating the pressure distribution of the piping network and it is tested by simulation and experiments.展开更多
In 2008,around 596 000 t of aluminum dross was generated from secondary aluminum industry in China;however,it was not sufficiently recycled yet.Approximately 95% of the Al dross was land filled without innocent treatm...In 2008,around 596 000 t of aluminum dross was generated from secondary aluminum industry in China;however,it was not sufficiently recycled yet.Approximately 95% of the Al dross was land filled without innocent treatment.The purpose of this work is to investigate Al dross recycling by environmentally efficient and friendly methods.Two methods of Al dross recycling which could utilize Al dross efficiently were presented.High-quality aluminum-silicon alloys and brown fused alumina(BFA) were produced successfully by recycling Al dross.Then,life cycle assessment(LCA) was performed to evaluate environmental impact of two methods of Al dross recycling process.The results show that the two methods are reasonable and the average recovery rate of Al dross is up to 98%.As the LCA results indicate,they have some advantages such as less natural resource consumption and pollutant emissions,which efficiently relieves the burden on the environment in electrolytic aluminum and secondary aluminum industry.展开更多
In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by ...In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by a simple and innovative approach, which has been called Akbari-Ganji's method (AGM). AGM is a very suitable computational process and is usable for solving various nonlinear differential equations. Moreover, using AGM which solving a set of algebraic equations, complicated nonlinear equations can easily be solved without any mathematical operations. Also, the damping ratio and energy lost per cycle for three cycles have been investigated. Furthermore, comparisons have been made between the obtained results by numerical method (Runk45) and AGM. Results showed the high accuracy of AGM. The results also showed that by increasing the amount of initial amplitude of vibration (A), the value of damping ratio will be increased, and the energy lost per cycle decreases by increasing the number of cycle. It is concluded that AGM is a reliable and precise approach for solving differential equations. On the other hand, it is better to say that AGM is able to solve linear and nonlinear differential equations directly in most of the situations. This means that the final solution can be obtained without any dimensionless procedure Therefore, AGM can be considered as a significant progress in nonlinear sciences.展开更多
Rotor systems supported by angular contact ball bearings are complicated due to nonlinear Hertzian contact force. In this paper, nonlinear bearing forces of ball bearing under five-dimensional loads are given, and 5-D...Rotor systems supported by angular contact ball bearings are complicated due to nonlinear Hertzian contact force. In this paper, nonlinear bearing forces of ball bearing under five-dimensional loads are given, and 5-DOF dynamic equations of a rigid rotor ball bearing system are established. Continuation-shooting algorithm for periodic solutions of the nonlinear non-autonomous dynamic system and Floquet multipliers of the system are used. Furthermore, the bifurcation and stability of the periodic motion of the system in different parametric domains are also studied. Results show that the bifurcation and stability of period-1 motion vary with structural parameters and operating parameters of the rigid rotor ball bearing system. Avoidance of unbalanced force and bending moment, appropriate initial contact angle, axial load and damping factor help enhance the unstable rotating speed of period-1 motion.展开更多
文摘The pressure pulsation induced by the pumped periodic pulsation fluid is the main factor of causing fluid resonance and stimulating pipelines vibrations and noise. In order to reduce the faults caused by the vibrations of pipelines, two aspects have been researched: one is to develop high quality filters, weaken and restrain the crest of pulsation pressure; the other is to design structural parameters of the piping network and eliminate the fluid resonance. Both need calculating the pressure pulsations of different structural parameters and frequencies, and knowing the amplitude frequency. In this paper the stiffness matrix technique is used for treating the coupling of subsystems of pipelines and calculating the pressure distribution of the piping network and it is tested by simulation and experiments.
基金Project(07dz12028) supported by the Science Program of Science and Technology Commission of Shanghai Municipality,China
文摘In 2008,around 596 000 t of aluminum dross was generated from secondary aluminum industry in China;however,it was not sufficiently recycled yet.Approximately 95% of the Al dross was land filled without innocent treatment.The purpose of this work is to investigate Al dross recycling by environmentally efficient and friendly methods.Two methods of Al dross recycling which could utilize Al dross efficiently were presented.High-quality aluminum-silicon alloys and brown fused alumina(BFA) were produced successfully by recycling Al dross.Then,life cycle assessment(LCA) was performed to evaluate environmental impact of two methods of Al dross recycling process.The results show that the two methods are reasonable and the average recovery rate of Al dross is up to 98%.As the LCA results indicate,they have some advantages such as less natural resource consumption and pollutant emissions,which efficiently relieves the burden on the environment in electrolytic aluminum and secondary aluminum industry.
文摘In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by a simple and innovative approach, which has been called Akbari-Ganji's method (AGM). AGM is a very suitable computational process and is usable for solving various nonlinear differential equations. Moreover, using AGM which solving a set of algebraic equations, complicated nonlinear equations can easily be solved without any mathematical operations. Also, the damping ratio and energy lost per cycle for three cycles have been investigated. Furthermore, comparisons have been made between the obtained results by numerical method (Runk45) and AGM. Results showed the high accuracy of AGM. The results also showed that by increasing the amount of initial amplitude of vibration (A), the value of damping ratio will be increased, and the energy lost per cycle decreases by increasing the number of cycle. It is concluded that AGM is a reliable and precise approach for solving differential equations. On the other hand, it is better to say that AGM is able to solve linear and nonlinear differential equations directly in most of the situations. This means that the final solution can be obtained without any dimensionless procedure Therefore, AGM can be considered as a significant progress in nonlinear sciences.
基金Supported by National Natural Science Foundation of China (No.50905061)the Fundamental Research Funds for Central Universities
文摘Rotor systems supported by angular contact ball bearings are complicated due to nonlinear Hertzian contact force. In this paper, nonlinear bearing forces of ball bearing under five-dimensional loads are given, and 5-DOF dynamic equations of a rigid rotor ball bearing system are established. Continuation-shooting algorithm for periodic solutions of the nonlinear non-autonomous dynamic system and Floquet multipliers of the system are used. Furthermore, the bifurcation and stability of the periodic motion of the system in different parametric domains are also studied. Results show that the bifurcation and stability of period-1 motion vary with structural parameters and operating parameters of the rigid rotor ball bearing system. Avoidance of unbalanced force and bending moment, appropriate initial contact angle, axial load and damping factor help enhance the unstable rotating speed of period-1 motion.