From the perspective of life cycle assessment (LCA), the development, construction, and operation of all kinds of new energy power generation technologies release greenhouse gas (GHG) emissions. This sparks concer...From the perspective of life cycle assessment (LCA), the development, construction, and operation of all kinds of new energy power generation technologies release greenhouse gas (GHG) emissions. This sparks concerns about the lowcarbon nature of the new energy power generation technologies. Based on national and international literature review, this paper estimates and compares the GHG emission factors of traditional thermal power generation and new energy power generation technologies in China with the LCA approach. The GHG mitigation potential of new energy power generation technologies as substitution for traditional thermal power generation in China was evaluated, according to the objectives of new energy power generation of the national development planning. The results show that the GHG emission factors of new energy power generation axe much lower than that of traditional thermal power generation even with LCA accounting, and the GHG mitigation potential of new energy substitution is huge.展开更多
High-resolution oxygen isotope records over the last 2249 ka (MIS 1-86) have been obtained from cores of the upper section (105.08 m) at ODP Site 1143 (water depth of 2772 m)drilled in the Nansha area, southern South ...High-resolution oxygen isotope records over the last 2249 ka (MIS 1-86) have been obtained from cores of the upper section (105.08 m) at ODP Site 1143 (water depth of 2772 m)drilled in the Nansha area, southern South China Sea. The sampling resolution is at about 2 ka intervals, resulting in one of the best oxygen isotope records over the global ocean. The oxygen isotope curves, displaying details in the Pleistocene glacial cycles, have revealed a nearly 300 ka long stage of transition from a predominant 40 ka to 100 ka periodicity. Therefore, the 'Mid-Pleistocene Revolution' should be considered as a process of transition rather than an abrupt change. Within the 100 ka glacial cycles, the changes in tropical sea surface water were found to lead those in high-latitude ice sheet. Our comparisons show that the ice sheet expansion and the glacial stage extension in the Northern Hemisphere with the 100 ka cycles must have been driven not by ice sheet itself, but by processes outside the high latitudes of the Northern Hemisphere.展开更多
基金supported by the China Sustainable Energy Program,Energy Foundation(No.G-0911-11642)Environmental Protection Industry of Commonweal Project "Research on Co-control Policies and Demonstration of Air Pollution and Greenhouse Gas Emissions of Key Industries"(No.201009051)
文摘From the perspective of life cycle assessment (LCA), the development, construction, and operation of all kinds of new energy power generation technologies release greenhouse gas (GHG) emissions. This sparks concerns about the lowcarbon nature of the new energy power generation technologies. Based on national and international literature review, this paper estimates and compares the GHG emission factors of traditional thermal power generation and new energy power generation technologies in China with the LCA approach. The GHG mitigation potential of new energy power generation technologies as substitution for traditional thermal power generation in China was evaluated, according to the objectives of new energy power generation of the national development planning. The results show that the GHG emission factors of new energy power generation axe much lower than that of traditional thermal power generation even with LCA accounting, and the GHG mitigation potential of new energy substitution is huge.
基金the National Natural Science Foundation of China (Grant No. 49999560) and NKBRSF Project (Grant No. 2000078500).
文摘High-resolution oxygen isotope records over the last 2249 ka (MIS 1-86) have been obtained from cores of the upper section (105.08 m) at ODP Site 1143 (water depth of 2772 m)drilled in the Nansha area, southern South China Sea. The sampling resolution is at about 2 ka intervals, resulting in one of the best oxygen isotope records over the global ocean. The oxygen isotope curves, displaying details in the Pleistocene glacial cycles, have revealed a nearly 300 ka long stage of transition from a predominant 40 ka to 100 ka periodicity. Therefore, the 'Mid-Pleistocene Revolution' should be considered as a process of transition rather than an abrupt change. Within the 100 ka glacial cycles, the changes in tropical sea surface water were found to lead those in high-latitude ice sheet. Our comparisons show that the ice sheet expansion and the glacial stage extension in the Northern Hemisphere with the 100 ka cycles must have been driven not by ice sheet itself, but by processes outside the high latitudes of the Northern Hemisphere.