An improved method based on the Tikhonov regularization principle and the precisely known reference station coordinate is proposed to design the regularized matrix. The ill-conditioning of the normal matrix can be imp...An improved method based on the Tikhonov regularization principle and the precisely known reference station coordinate is proposed to design the regularized matrix. The ill-conditioning of the normal matrix can be improved by the regularized matrix. The relative floating ambiguity can be computed only by using the data of several epochs. Combined with the LAMBDA method, the new approach can correctly and quickly fix the integer ambiguity and the success rate is 100% in experiments. Through using measured data sets from four mediumlong baselines, the new method can obtain exact ambiguities only by the Ll-frequency data of three epochs. Compared with the existing methods, the improved method can solve the ambiguities of the medium-long baseline GPS network RTK only using L1-frequency GPS data.展开更多
When satellite navigation receivers are equipped with multiple antennas, they can deliver attitude information. In previous researches, carrier phase differencing measurement equations were built in the earth-centered...When satellite navigation receivers are equipped with multiple antennas, they can deliver attitude information. In previous researches, carrier phase differencing measurement equations were built in the earth-centered, earth-fixed (ECEF) co- ordinate, and attitude angles could be obtained through the rotation matrix between the body frame (BF) and the local level frame (LLF). Different from the conventional methods, a hybrid algorithm is presented to resolve attitude parameters utilizing the single differencing (SD) carrier phase equations established in LLF. Assuming that the cycle integer ambiguity is known, the measure- ment equations have attitude analytical resolutions by using simultaneous single difference equations for two in-view satellites. In addition, the algorithm is capable of reducing the search integer space into countable 2D discrete points and the ambiguity function method (AFM) resolves the ambiguity function within the analytical solutions space. In the case of frequency division multiple access (FDMA) for the Russian Global Orbiting Navigation Satellite System (GLONASS), a receiver clock bias estimation is employed to evaluate its carrier phase. An evaluating variable and a weighted factor are introduced to assess the integer ambiguity initialization. By static and dynamic ground experiments, the results show that the proposed approach is effective, with enough accuracy and low computation. It can satisfy attitude determination in cases of GPS alone and combined with GLONASS.展开更多
文摘An improved method based on the Tikhonov regularization principle and the precisely known reference station coordinate is proposed to design the regularized matrix. The ill-conditioning of the normal matrix can be improved by the regularized matrix. The relative floating ambiguity can be computed only by using the data of several epochs. Combined with the LAMBDA method, the new approach can correctly and quickly fix the integer ambiguity and the success rate is 100% in experiments. Through using measured data sets from four mediumlong baselines, the new method can obtain exact ambiguities only by the Ll-frequency data of three epochs. Compared with the existing methods, the improved method can solve the ambiguities of the medium-long baseline GPS network RTK only using L1-frequency GPS data.
文摘When satellite navigation receivers are equipped with multiple antennas, they can deliver attitude information. In previous researches, carrier phase differencing measurement equations were built in the earth-centered, earth-fixed (ECEF) co- ordinate, and attitude angles could be obtained through the rotation matrix between the body frame (BF) and the local level frame (LLF). Different from the conventional methods, a hybrid algorithm is presented to resolve attitude parameters utilizing the single differencing (SD) carrier phase equations established in LLF. Assuming that the cycle integer ambiguity is known, the measure- ment equations have attitude analytical resolutions by using simultaneous single difference equations for two in-view satellites. In addition, the algorithm is capable of reducing the search integer space into countable 2D discrete points and the ambiguity function method (AFM) resolves the ambiguity function within the analytical solutions space. In the case of frequency division multiple access (FDMA) for the Russian Global Orbiting Navigation Satellite System (GLONASS), a receiver clock bias estimation is employed to evaluate its carrier phase. An evaluating variable and a weighted factor are introduced to assess the integer ambiguity initialization. By static and dynamic ground experiments, the results show that the proposed approach is effective, with enough accuracy and low computation. It can satisfy attitude determination in cases of GPS alone and combined with GLONASS.