生成对抗网络常常被用于图像着色、语义合成、风格迁移等图像转换任务,但现阶段图像生成模型的训练往往依赖于大量配对的数据集,且只能实现两个图像域之间的转换。针对以上问题,提出了一种基于生成对抗网络的时尚内容和风格迁移模型(con...生成对抗网络常常被用于图像着色、语义合成、风格迁移等图像转换任务,但现阶段图像生成模型的训练往往依赖于大量配对的数据集,且只能实现两个图像域之间的转换。针对以上问题,提出了一种基于生成对抗网络的时尚内容和风格迁移模型(content and style transfer based on generative adversarial network,CS-GAN)。该模型利用对比学习框架最大化时尚单品与生成图像之间的互信息,可保证在时尚单品结构不变的前提下实现内容迁移;通过层一致性动态卷积方法,针对不同风格图像自适应地学习风格特征,实现时尚单品任意风格迁移,对输入的时尚单品进行内容特征(如颜色、纹理)和风格特征(如莫奈风、立体派)的融合,实现多个图像域的转换。在公开的时尚数据集上进行对比实验和结果分析,该方法与其他主流方法相比,在图像合成质量、Inception score和FID距离评价指标上均有所提升。展开更多
利用深度卷积神经网络智能化地提取遥感图像中的建筑物对于数字城市构建、灾害侦查、土地管理等具有重要意义。多时相遥感图像之间的色彩差异会导致建筑物语义分割模型泛化能力下降。针对此,本文提出了注意力引导的色彩一致生成对抗网络...利用深度卷积神经网络智能化地提取遥感图像中的建筑物对于数字城市构建、灾害侦查、土地管理等具有重要意义。多时相遥感图像之间的色彩差异会导致建筑物语义分割模型泛化能力下降。针对此,本文提出了注意力引导的色彩一致生成对抗网络(attention-guided color consistency adversarial network,ACGAN)。该算法以参考色彩风格图像及相同区域、不同时相的待纠正图像作为训练集,采用加入了U型注意力机制的循环一致生成对抗网络训练得到色彩一致模型。在预测阶段,该模型将待纠正图像的色调转换为参考色彩风格图像的色调,这一阶段基于深度学习模型的推理能力,而不再需要相应的参考色彩风格图像。为了验证算法的有效性,首先,将本文算法与传统的图像处理算法及其他循环一致生成对抗网络做了对比试验。结果表明,ACGAN色彩一致后的图像与参考色彩风格图像的色调更加相似。其次,将以上不同的色彩一致性算法处理后的结果图像进行建筑物语义分割试验,证明本文方法更加有利于多时相遥感图像语义分割模型泛化能力的提升。展开更多
文摘生成对抗网络常常被用于图像着色、语义合成、风格迁移等图像转换任务,但现阶段图像生成模型的训练往往依赖于大量配对的数据集,且只能实现两个图像域之间的转换。针对以上问题,提出了一种基于生成对抗网络的时尚内容和风格迁移模型(content and style transfer based on generative adversarial network,CS-GAN)。该模型利用对比学习框架最大化时尚单品与生成图像之间的互信息,可保证在时尚单品结构不变的前提下实现内容迁移;通过层一致性动态卷积方法,针对不同风格图像自适应地学习风格特征,实现时尚单品任意风格迁移,对输入的时尚单品进行内容特征(如颜色、纹理)和风格特征(如莫奈风、立体派)的融合,实现多个图像域的转换。在公开的时尚数据集上进行对比实验和结果分析,该方法与其他主流方法相比,在图像合成质量、Inception score和FID距离评价指标上均有所提升。
文摘利用深度卷积神经网络智能化地提取遥感图像中的建筑物对于数字城市构建、灾害侦查、土地管理等具有重要意义。多时相遥感图像之间的色彩差异会导致建筑物语义分割模型泛化能力下降。针对此,本文提出了注意力引导的色彩一致生成对抗网络(attention-guided color consistency adversarial network,ACGAN)。该算法以参考色彩风格图像及相同区域、不同时相的待纠正图像作为训练集,采用加入了U型注意力机制的循环一致生成对抗网络训练得到色彩一致模型。在预测阶段,该模型将待纠正图像的色调转换为参考色彩风格图像的色调,这一阶段基于深度学习模型的推理能力,而不再需要相应的参考色彩风格图像。为了验证算法的有效性,首先,将本文算法与传统的图像处理算法及其他循环一致生成对抗网络做了对比试验。结果表明,ACGAN色彩一致后的图像与参考色彩风格图像的色调更加相似。其次,将以上不同的色彩一致性算法处理后的结果图像进行建筑物语义分割试验,证明本文方法更加有利于多时相遥感图像语义分割模型泛化能力的提升。