期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
社会周期与社会预测的周期性原理
1
作者 阎耀军 《理论与现代化》 2006年第1期37-42,83,共7页
物质世界运动中充斥着大量的重复有效或循环再现的事物或现象,对此我们称之为周期性。周期性是一种十分重要并具有普遍意义的规律性现象。我们对发生在社会领域中的周期性现象,称之为社会周期。由于社会周期是社会运行和变迁中一种带有... 物质世界运动中充斥着大量的重复有效或循环再现的事物或现象,对此我们称之为周期性。周期性是一种十分重要并具有普遍意义的规律性现象。我们对发生在社会领域中的周期性现象,称之为社会周期。由于社会周期是社会运行和变迁中一种带有规律性的现象,因而研究社会预测的周期性原理,无疑将会为我们增添一把开启社会预测大门的钥匙。 展开更多
关键词 周期 社会周期 周期性原理 社会预测
下载PDF
社会周期与社会预测的周期性原理
2
作者 阎耀军 《南方论丛》 2006年第1期66-75,共10页
物质世界运动中充斥着大量的重复有效或循环再现的事物或现象,对此我们称之为周期性。周期性是一种十分重要并具有普遍意义的规律性现象。我们对发生在社会领域中的周期性现象,称之为社会周期。由于社会周期是社会运行和变迁中一种带有... 物质世界运动中充斥着大量的重复有效或循环再现的事物或现象,对此我们称之为周期性。周期性是一种十分重要并具有普遍意义的规律性现象。我们对发生在社会领域中的周期性现象,称之为社会周期。由于社会周期是社会运行和变迁中一种带有规律性的现象,因而研究社会预测的周期性原理,无疑将会为我们增添一把开启社会预测大门的钥匙。 展开更多
关键词 周期 社会周期 周期性原理 社会预测
原文传递
Control of Beam Halo-Chaos by Fraction Power-Law Function in Hackle Periodic-Focusing Channel
3
作者 YU Hai-Jun BAI Long +2 位作者 WENG Jia-Qiang LUO Xiao-Shu FANG Jin-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第12期1365-1368,共4页
The Kapchinsky Vladimirsky(K-V)beam through a hackle periodic-focusing magnetic field is studiedusing the particle-core model.The beam halo-chaos is found,and an idea of fraction power-law function controller ispropos... The Kapchinsky Vladimirsky(K-V)beam through a hackle periodic-focusing magnetic field is studiedusing the particle-core model.The beam halo-chaos is found,and an idea of fraction power-law function controller isproposed based on the mechanism of halo formation and the strategy of controlling halo-chaos.The method is appliedto the multi-particle simulation to control the halo.The numerical results show that the halo-chaos and its regenerationcan be eliminated effectively by using the fraction power-law function control method.At the same time,the radialparticle density is uniform at the beam's center as long as the control method and appropriate parameter are chosen. 展开更多
关键词 beam halo-chaos hackle periodic-focusing magnetic field fraction power-law function
下载PDF
城市社会预警基本原理刍议——从城市社会学视角对城市社会问题爆发的预警机理探索 被引量:12
4
作者 阎耀军 《天津社会科学》 CSSCI 2003年第3期70-73,共4页
关键词 城市社会预警 基本原理 城市社会学 城市社会问题 预警机理 社会运行基本矛盾 警限原理 量变 质变 对立统一原理 社会危机现象 周期性重演原理 相似性原理 社会危机发展过程 因果相关性 警兆原理
原文传递
Spherical periodicity as structural homology of crystalline and amorphous states 被引量:1
5
作者 张爽 董丹丹 +2 位作者 王子鉴 董闯 Peter H?ussler 《Science China Materials》 SCIE EI CSCD 2018年第3期409-416,共8页
It has been widely accepted that spherical per- iodicity generally dominates liquid and amorphous structure formation, where atoms tend to gather near spherically peri- odic shells according to Friedel oscillation. He... It has been widely accepted that spherical per- iodicity generally dominates liquid and amorphous structure formation, where atoms tend to gather near spherically peri- odic shells according to Friedel oscillation. Here it is revealed that the same order is just hidden in the atomic global packing modes of the crystalline phases relevant to bulk metallic glasses. Among the multiple nearest-neighbor dusters devel- oped from all the non-equivalent atomic sites in a given phase, there always exists a principal duster, centered by which the spherical periodicity, both topologically and chemically, is the most distinct. Then the principal dusters plus specific glue atoms just constitute the cluster-plus-glue-atom structural units shared by both metallic glasses and the corresponding crystalline phases. It is further pointed out that the spherical periodicity order represents the common structural homology of crystalline and amorphous states in the medium-range through scrutinizing all binary bulk-glass-relevant phases in Cu-(Zr, Hf), Ni-(Nb, Ta), Al-Ca, and Pd-Si systems. 展开更多
关键词 spherical periodicity order Friedel oscillation me-tallic glasses cluster-plus-glue-atom model principal cluster
原文传递
Theory of optimal harvesting for a nonlinear size-structured population in periodic environments 被引量:4
6
作者 Ze-Rong He Rong Liu 《International Journal of Biomathematics》 2014年第4期201-218,共18页
This paper investigates the theoretical aspects for an optimal harvesting problem of a nonlinear size-structured population model in a periodic environment. We establish the well-posedness of the state system by means... This paper investigates the theoretical aspects for an optimal harvesting problem of a nonlinear size-structured population model in a periodic environment. We establish the well-posedness of the state system by means of frozen coefficients and fixed point reasoning. The existence of a unique optimal policy is proved via Ekeland's variational principle, and the first-order optimality conditions are derived by a suitable normM cone and a dual system. The results obtained would be beneficial for exploration of renewable 展开更多
关键词 Body size population model HARVESTING fixed point normal cone Ekeland'sprinciple.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部