The K-V beam through a hackle periodic-focusing magnetic field is studied using the particle-core model. The beam halo-chaos is found, and a power function controller is proposed based on mechanism of halo formation a...The K-V beam through a hackle periodic-focusing magnetic field is studied using the particle-core model. The beam halo-chaos is found, and a power function controller is proposed based on mechanism of halo formation and strategy of controlling halo-chaos. Multiparticle simulation was performed to control the halo by using the power function control method. The results show that the halo-chaos and its regeneration can be eliminated effectively. We also find that the radial particle density evolvement is of uniformity at the beam’s centre as long as appropriate parameters are chosen.展开更多
The Kapchinsky Vladimirsky(K-V)beam through a hackle periodic-focusing magnetic field is studiedusing the particle-core model.The beam halo-chaos is found,and an idea of fraction power-law function controller ispropos...The Kapchinsky Vladimirsky(K-V)beam through a hackle periodic-focusing magnetic field is studiedusing the particle-core model.The beam halo-chaos is found,and an idea of fraction power-law function controller isproposed based on the mechanism of halo formation and the strategy of controlling halo-chaos.The method is appliedto the multi-particle simulation to control the halo.The numerical results show that the halo-chaos and its regenerationcan be eliminated effectively by using the fraction power-law function control method.At the same time,the radialparticle density is uniform at the beam's center as long as the control method and appropriate parameter are chosen.展开更多
In this paper, by applying the extended 3acobi elliptic function expansion method, the envelope periodic solutions and corresponding dark soliton solution, bright soliton solution to Bose-Einstein condensation in line...In this paper, by applying the extended 3acobi elliptic function expansion method, the envelope periodic solutions and corresponding dark soliton solution, bright soliton solution to Bose-Einstein condensation in linear magnetic field and time-dependent laser field are obtained.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 10247005)the Natural Science Foundation of the Anhui Higher Education Bureau (Grant No. KJ2007B187)the Scientific Research Foundation of China University of Mining and Technology for the Young (Grant No. OK060119).
文摘The K-V beam through a hackle periodic-focusing magnetic field is studied using the particle-core model. The beam halo-chaos is found, and a power function controller is proposed based on mechanism of halo formation and strategy of controlling halo-chaos. Multiparticle simulation was performed to control the halo by using the power function control method. The results show that the halo-chaos and its regeneration can be eliminated effectively. We also find that the radial particle density evolvement is of uniformity at the beam’s centre as long as appropriate parameters are chosen.
基金National Natural Science Foundation of China under Crant No.10247005the Natural Science Foundation of the Anhui Higher Education Institutions of China under Grant No.KJ2007B187the Scientific Research Foundation of China University Of Mining and Technology for the Young under Grant No.OK060119
文摘The Kapchinsky Vladimirsky(K-V)beam through a hackle periodic-focusing magnetic field is studiedusing the particle-core model.The beam halo-chaos is found,and an idea of fraction power-law function controller isproposed based on the mechanism of halo formation and the strategy of controlling halo-chaos.The method is appliedto the multi-particle simulation to control the halo.The numerical results show that the halo-chaos and its regenerationcan be eliminated effectively by using the fraction power-law function control method.At the same time,the radialparticle density is uniform at the beam's center as long as the control method and appropriate parameter are chosen.
基金Supported by National Natural Science Foundation of China under Grant No.90511009
文摘In this paper, by applying the extended 3acobi elliptic function expansion method, the envelope periodic solutions and corresponding dark soliton solution, bright soliton solution to Bose-Einstein condensation in linear magnetic field and time-dependent laser field are obtained.