The periodic or quasi-periodic orbits around collinear Lagrange points present many properties that are advantageous for space missions. These Lagrange point orbits are exponentially unstable. On the basis of an analy...The periodic or quasi-periodic orbits around collinear Lagrange points present many properties that are advantageous for space missions. These Lagrange point orbits are exponentially unstable. On the basis of an analytical method, an orbit control strategy that is designed to eliminate the dominant unstable components of Lagrange point orbits is developed. The proposed strategy enables the derivation of the analytical expression of nonlinear control force. The control parameter of this strategy can be arbitrarily selected provided that the parameter is considerably lower than the negative eigenvalue of motion equations, and that the energy required keeps the same order of magnitude. The periodic or quasi-periodic orbit of controlled equations remains near the periodic or quasi-periodic orbit of uncontrolled equations.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10832004 and 11102006)the Fan-Zhou Foundation (Grant No. 20110502)
文摘The periodic or quasi-periodic orbits around collinear Lagrange points present many properties that are advantageous for space missions. These Lagrange point orbits are exponentially unstable. On the basis of an analytical method, an orbit control strategy that is designed to eliminate the dominant unstable components of Lagrange point orbits is developed. The proposed strategy enables the derivation of the analytical expression of nonlinear control force. The control parameter of this strategy can be arbitrarily selected provided that the parameter is considerably lower than the negative eigenvalue of motion equations, and that the energy required keeps the same order of magnitude. The periodic or quasi-periodic orbit of controlled equations remains near the periodic or quasi-periodic orbit of uncontrolled equations.