Applying man-machine-environment system engineering(MMESE)in vessels is a method to improve the effectiveness of the interaction between equipment, environment, and humans for the purpose of advancing operating effici...Applying man-machine-environment system engineering(MMESE)in vessels is a method to improve the effectiveness of the interaction between equipment, environment, and humans for the purpose of advancing operating efficiency, performance, safety, and habitability of a vessel and its subsystems. In the following research, the life cycle of vessels was divided into 9 phases, and 15 research subjects were also identified from among these phases. The 15 subjects were systemized, and then the man-machine-environment engineering system application model for vessels was developed using the ICAM definition method 0 (IDEF0), which is a systematical modeling method. This system model bridges the gap between the data and information flow of every two associated subjects with the major basic research methods and approaches included, which brings the formerly relatively independent subjects together as a whole. The application of this systematic model should facilitate the application of man-machine-environment system engineering in vessels, especially at the conceptual and embodiment design phases. The managers and designers can deal with detailed tasks quickly and efficiently while reducing repetitive work.展开更多
The inclining experiment is the only regulatory tool to assess ship stability. This experiment is a time consuming process for both real-life tests and ship model experiments. The difficulty is mainly due to a bias in...The inclining experiment is the only regulatory tool to assess ship stability. This experiment is a time consuming process for both real-life tests and ship model experiments. The difficulty is mainly due to a bias in the measurement of heel angle. Nowadays, digital inclinometers are available, but they are expensive. In this study, the use of a smartphone application is presented for ship inclination and rolling-period tests. The idea consists of using accelerometer and gyroscope sensors built into the current smartphones for the measurements. Therefore, some experiments are carried out on an example trawler model to exhibit the uses and advantages of this method. The obtained results are in good agreement with those provided from the pendulum method and natural roll-period test. This application is new, easy, and more accurately assesses metacentric height during the inclining and rolling-period tests.展开更多
基金Supported by the Fundamental Research Program of CSTIND under Grant No.GF2007004Harbin Engineering University Central Foundation under Grant No.HEUCF100718
文摘Applying man-machine-environment system engineering(MMESE)in vessels is a method to improve the effectiveness of the interaction between equipment, environment, and humans for the purpose of advancing operating efficiency, performance, safety, and habitability of a vessel and its subsystems. In the following research, the life cycle of vessels was divided into 9 phases, and 15 research subjects were also identified from among these phases. The 15 subjects were systemized, and then the man-machine-environment engineering system application model for vessels was developed using the ICAM definition method 0 (IDEF0), which is a systematical modeling method. This system model bridges the gap between the data and information flow of every two associated subjects with the major basic research methods and approaches included, which brings the formerly relatively independent subjects together as a whole. The application of this systematic model should facilitate the application of man-machine-environment system engineering in vessels, especially at the conceptual and embodiment design phases. The managers and designers can deal with detailed tasks quickly and efficiently while reducing repetitive work.
文摘The inclining experiment is the only regulatory tool to assess ship stability. This experiment is a time consuming process for both real-life tests and ship model experiments. The difficulty is mainly due to a bias in the measurement of heel angle. Nowadays, digital inclinometers are available, but they are expensive. In this study, the use of a smartphone application is presented for ship inclination and rolling-period tests. The idea consists of using accelerometer and gyroscope sensors built into the current smartphones for the measurements. Therefore, some experiments are carried out on an example trawler model to exhibit the uses and advantages of this method. The obtained results are in good agreement with those provided from the pendulum method and natural roll-period test. This application is new, easy, and more accurately assesses metacentric height during the inclining and rolling-period tests.