In this paper, the bilinear form of a generalized Kadomtsev-Petviashvili equation is obtained by applying the binary Bell polynomials. The N-soliton solution and one periodic wave solution are presented by use of the ...In this paper, the bilinear form of a generalized Kadomtsev-Petviashvili equation is obtained by applying the binary Bell polynomials. The N-soliton solution and one periodic wave solution are presented by use of the Hirota direct method and the Riemann theta function, respectively. And then the asymptotic analysis demonstrates one periodic wave solution can be reduced to one soliton solution. In the end, the bilinear Backlund transformations are derived.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10735030 and 11075055Innovative Research Team Program of the National Natural Science Foundation of China under Grant No. 61021004
文摘In this paper, the bilinear form of a generalized Kadomtsev-Petviashvili equation is obtained by applying the binary Bell polynomials. The N-soliton solution and one periodic wave solution are presented by use of the Hirota direct method and the Riemann theta function, respectively. And then the asymptotic analysis demonstrates one periodic wave solution can be reduced to one soliton solution. In the end, the bilinear Backlund transformations are derived.