A detailed analysis of the dynamic frequency spectrum characteristics of gravity waves(GWs)during a local heavy rainfall event on 20–21 November 2016 in Foshan,China,is presented.The results of this analysis,which wa...A detailed analysis of the dynamic frequency spectrum characteristics of gravity waves(GWs)during a local heavy rainfall event on 20–21 November 2016 in Foshan,China,is presented.The results of this analysis,which was based on high-precision microbarograph data,indicate that GWs played a key role in generating the rainstorm.The GWs experienced two intermittent periods of amplitude enhancement and period widening.The largest amplitudes of the GWs were 80–160 Pa,with a corresponding period range of 140–270 min,which were approximately 4 h ahead of the rainstorm.The severe storms appeared to affect the GWs by augmenting the wave amplitudes with center amplitudes of approximately 80–100 Pa and periods ranging between 210 and 270 min;in particular,the amplitudes increased to approximately 10 Pa for GWs with shorter periods(less than 36 min).The pre-existing large-amplitude GWs may be precursors to severe storms;that is,these GWs occurred approximately 4 h earlier than the time radars and satellites identified convections.Thus,these results indicate that large-amplitude GWs constitute a possible mechanism for severe-storm warning.展开更多
基金sponsored by the National Key R&D Program of China [Grant No.2018YFC1507900]the National Natural Science Foundation of China [Grant No.41530427]。
文摘A detailed analysis of the dynamic frequency spectrum characteristics of gravity waves(GWs)during a local heavy rainfall event on 20–21 November 2016 in Foshan,China,is presented.The results of this analysis,which was based on high-precision microbarograph data,indicate that GWs played a key role in generating the rainstorm.The GWs experienced two intermittent periods of amplitude enhancement and period widening.The largest amplitudes of the GWs were 80–160 Pa,with a corresponding period range of 140–270 min,which were approximately 4 h ahead of the rainstorm.The severe storms appeared to affect the GWs by augmenting the wave amplitudes with center amplitudes of approximately 80–100 Pa and periods ranging between 210 and 270 min;in particular,the amplitudes increased to approximately 10 Pa for GWs with shorter periods(less than 36 min).The pre-existing large-amplitude GWs may be precursors to severe storms;that is,these GWs occurred approximately 4 h earlier than the time radars and satellites identified convections.Thus,these results indicate that large-amplitude GWs constitute a possible mechanism for severe-storm warning.