Excessive vibration and noise radiation of the track structure can be caused by the operation of high speed trains.Though the track structure is characterized by obvious periodic properties and band gaps,the bandwidth...Excessive vibration and noise radiation of the track structure can be caused by the operation of high speed trains.Though the track structure is characterized by obvious periodic properties and band gaps,the bandwidth is narrow and the elastic wave attenuation capability within the band gap is weak.In order to effectively control the vibration and noise of track structure,the local resonance mechanism is introduced to broaden the band gap and realize wave propagation control.The locally resonant units are attached periodically on the rail,forming a new locally resonant phononic crystal structure.Then the tuning of the elastic wave band gaps of track structure is discussed,and the formation mechanism of the band gap is explicated.The research results show that a new wide and adjustable locally resonant band gap is formed after the resonant units are introduced.The phenomenon of coupling and transition can be observed between the new locally resonant band gap and the original band gap of the periodic track structure with the band gap width reaching the maximum at the coupling position.The broader band gap can be applied for vibration and noise reduction in high speed railway track structure.展开更多
The stickiness effect suffered by chaotic orbits diffusing in the phase space of a dynamical system is studied in this paper.Previous works have shown that the hyperbolic structures in the phase space play an essentia...The stickiness effect suffered by chaotic orbits diffusing in the phase space of a dynamical system is studied in this paper.Previous works have shown that the hyperbolic structures in the phase space play an essential role in causing the stickiness effect.We present in this paper the relationship between the stickiness effect and the geometric property of hyperbolic structures.Using a two-dimensional area-preserving twist mapping as the model,we develop the numerical algorithms for computing the positions of the hyperbolic periodic orbits and for calculating the angle between the stable and unstable manifolds of the hyperbolic periodic orbit.We show how the stickiness effect and the orbital diffusion speed are related to the angle.展开更多
基金Projects(51978585,U1734207)supported by the National Natural Science Foundation of ChinaProject(2022YFB2603400)supported by the National Key Research and Development Program of China。
基金Project(2016YFE0205200)supported by the National Key Research and Development Program of ChinaProjects(51425804,51508479)supported by the National Natural Science Foundation of China+1 种基金Project(2016310019)supported by the Doctorial Innovation Fund of Southwest Jiaotong University,ChinaProject(2017GZ0373)supported by the Research Fund for Key Research and Development Projects in Sichuan Province,China
文摘Excessive vibration and noise radiation of the track structure can be caused by the operation of high speed trains.Though the track structure is characterized by obvious periodic properties and band gaps,the bandwidth is narrow and the elastic wave attenuation capability within the band gap is weak.In order to effectively control the vibration and noise of track structure,the local resonance mechanism is introduced to broaden the band gap and realize wave propagation control.The locally resonant units are attached periodically on the rail,forming a new locally resonant phononic crystal structure.Then the tuning of the elastic wave band gaps of track structure is discussed,and the formation mechanism of the band gap is explicated.The research results show that a new wide and adjustable locally resonant band gap is formed after the resonant units are introduced.The phenomenon of coupling and transition can be observed between the new locally resonant band gap and the original band gap of the periodic track structure with the band gap width reaching the maximum at the coupling position.The broader band gap can be applied for vibration and noise reduction in high speed railway track structure.
基金supported by the National Natural Science Foundation of China(Grant Nos.11073012,11078001 and 11003008)the Qing Lan Project(Jiangsu Province)the National Basic Research Program of China(Grant Nos.2013CB834103 and 2013CB834904)
文摘The stickiness effect suffered by chaotic orbits diffusing in the phase space of a dynamical system is studied in this paper.Previous works have shown that the hyperbolic structures in the phase space play an essential role in causing the stickiness effect.We present in this paper the relationship between the stickiness effect and the geometric property of hyperbolic structures.Using a two-dimensional area-preserving twist mapping as the model,we develop the numerical algorithms for computing the positions of the hyperbolic periodic orbits and for calculating the angle between the stable and unstable manifolds of the hyperbolic periodic orbit.We show how the stickiness effect and the orbital diffusion speed are related to the angle.