An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong ...An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes and traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. The results of an industrial application show that the proposed ILMPC method is effective for a class of continuous/batch processes.展开更多
This paper deals with exponential synchronization for a class of neural networks with mixed time-varying delays via periodically intermittent control. Some novel and effective exponential synchronization criteria are ...This paper deals with exponential synchronization for a class of neural networks with mixed time-varying delays via periodically intermittent control. Some novel and effective exponential synchronization criteria are derived by constructing Lyapunov functional and applying some analysis techniques. These results presented in this paper generalize and improve many known results. Finally, this paper presents an illustrative example and uses the simulated results to show the feasibility and effectiveness of the proposed scheme.展开更多
基金Supported by the National Creative Research Groups Science Foundation of China (60721062) and the National High Technology Research and Development Program of China (2007AA04Z162).
文摘An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes and traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. The results of an industrial application show that the proposed ILMPC method is effective for a class of continuous/batch processes.
基金This work was supported by the National Natural Science Foundation of China (No. 61305076).
文摘This paper deals with exponential synchronization for a class of neural networks with mixed time-varying delays via periodically intermittent control. Some novel and effective exponential synchronization criteria are derived by constructing Lyapunov functional and applying some analysis techniques. These results presented in this paper generalize and improve many known results. Finally, this paper presents an illustrative example and uses the simulated results to show the feasibility and effectiveness of the proposed scheme.