two-prey one-predator system with a special Holling-Ⅱ functional response is discussed. That w-periodic solution of the predator extinction is global asymptotically stable is proved by some new methods. Furthermore, ...two-prey one-predator system with a special Holling-Ⅱ functional response is discussed. That w-periodic solution of the predator extinction is global asymptotically stable is proved by some new methods. Furthermore, by the comparison theorem of impulsive differential equation, the sufficient conditions are derived for the permanence and the existence of periodic solution of the system.展开更多
By the theory of periodic parabolic operators, Shauder estimates and bifurcation, the existence of positive periodic solutions for periodic prey-predator model with saturation is discussed. The necessary and sufficien...By the theory of periodic parabolic operators, Shauder estimates and bifurcation, the existence of positive periodic solutions for periodic prey-predator model with saturation is discussed. The necessary and sufficient conditions to coexistence of periodic system are obtained.展开更多
A predator-prey discrete-time model with non-monotone functional response and den- sity dependence is investigated in this paper. By using the comparison theorem of the difference equation, some sufficient conditions ...A predator-prey discrete-time model with non-monotone functional response and den- sity dependence is investigated in this paper. By using the comparison theorem of the difference equation, some sufficient conditions are obtained for the permanence of the system with variable coefficients. At the same time, a set of sufficient conditions about permanent of the system with almost periodic coefficients is also set up, which utilizes almost periodic characteristics of the system. Furthermore, the criteria which guarantee the existence of a globally attractive positive almost periodic solution of the system is established. An example is given to illustrate the feasibility of the obtained results.展开更多
The goal of this paper is to investigate the dynamics of a non-autonomous density- dependent predator-prey system with Beddington-DeAngelis functional response, where not only the prey density dependence but also the ...The goal of this paper is to investigate the dynamics of a non-autonomous density- dependent predator-prey system with Beddington-DeAngelis functional response, where not only the prey density dependence but also the predator density dependence are considered, such that the studied predator-prey system conforms to the realistically biological environment. We firstly introduce a sufficient condition for the permanence of the system and then use a specific set to obtain a weaker sufficient condition. Afterward, we provide corresponding conditions for the extinction of the system and the existence of boundary periodical solutions, respectively. ~rther, we get a sufficient condition for global attractiveness of the boundary periodic solution by constructing a Lyapunov function, arriving at the uniqueness of boundary periodic solutions since the uniqueness of boundary periodic solutions can be ensured by global attractiveness. Finally, based on the existence of positive periodic solutions, which can be ensured by the Brouwer fixed- point theorem, we provide a sufficient condition for the uniqueness of positive periodic solutions.展开更多
基金Supported by the Education Department Natural Science Foundation of Henan Province (2008A180041)
文摘two-prey one-predator system with a special Holling-Ⅱ functional response is discussed. That w-periodic solution of the predator extinction is global asymptotically stable is proved by some new methods. Furthermore, by the comparison theorem of impulsive differential equation, the sufficient conditions are derived for the permanence and the existence of periodic solution of the system.
基金Supported by the Science Foundation of Hangzhou Dianzi University(KYF091504021)Supported by the Science Foundation of China Jiliang University(XZ0442)
文摘By the theory of periodic parabolic operators, Shauder estimates and bifurcation, the existence of positive periodic solutions for periodic prey-predator model with saturation is discussed. The necessary and sufficient conditions to coexistence of periodic system are obtained.
文摘A predator-prey discrete-time model with non-monotone functional response and den- sity dependence is investigated in this paper. By using the comparison theorem of the difference equation, some sufficient conditions are obtained for the permanence of the system with variable coefficients. At the same time, a set of sufficient conditions about permanent of the system with almost periodic coefficients is also set up, which utilizes almost periodic characteristics of the system. Furthermore, the criteria which guarantee the existence of a globally attractive positive almost periodic solution of the system is established. An example is given to illustrate the feasibility of the obtained results.
文摘The goal of this paper is to investigate the dynamics of a non-autonomous density- dependent predator-prey system with Beddington-DeAngelis functional response, where not only the prey density dependence but also the predator density dependence are considered, such that the studied predator-prey system conforms to the realistically biological environment. We firstly introduce a sufficient condition for the permanence of the system and then use a specific set to obtain a weaker sufficient condition. Afterward, we provide corresponding conditions for the extinction of the system and the existence of boundary periodical solutions, respectively. ~rther, we get a sufficient condition for global attractiveness of the boundary periodic solution by constructing a Lyapunov function, arriving at the uniqueness of boundary periodic solutions since the uniqueness of boundary periodic solutions can be ensured by global attractiveness. Finally, based on the existence of positive periodic solutions, which can be ensured by the Brouwer fixed- point theorem, we provide a sufficient condition for the uniqueness of positive periodic solutions.