The modulation phase shift method was used to measure chromatic dispersion in a standard single mode fiber for telecommunication. The modulation phase difference of the transmitted light at the wavelength of 1532.16 n...The modulation phase shift method was used to measure chromatic dispersion in a standard single mode fiber for telecommunication. The modulation phase difference of the transmitted light at the wavelength of 1532.16 nm modulated by a radio frequency signal was measured, relative to the transmitted light at the wavelength of 1549.33 nm modulated by the same signal. By introducing a reference light at the wavelength of 1310 nm, a 1310/1550 nm wavelength division multiplexing was used instead of the high cost dense wavelength division multiplexing. In the experiment, two testing lights were coupled with the reference light to the fiber spools of different lengths, respectively. By finite difference method, the chromatic dispersion between the two testing lights was measured, and the fixed errors generated during transmission were less than 0.5 ps/(nm·km).展开更多
基金Doctoral Foundation of Education Ministry of China(No 20040056008) National Natural Science Foundation ofChina (No 50539060)
文摘The modulation phase shift method was used to measure chromatic dispersion in a standard single mode fiber for telecommunication. The modulation phase difference of the transmitted light at the wavelength of 1532.16 nm modulated by a radio frequency signal was measured, relative to the transmitted light at the wavelength of 1549.33 nm modulated by the same signal. By introducing a reference light at the wavelength of 1310 nm, a 1310/1550 nm wavelength division multiplexing was used instead of the high cost dense wavelength division multiplexing. In the experiment, two testing lights were coupled with the reference light to the fiber spools of different lengths, respectively. By finite difference method, the chromatic dispersion between the two testing lights was measured, and the fixed errors generated during transmission were less than 0.5 ps/(nm·km).