Rendezvous is a blind process establishing a communication link on a common channel between a pair of nodes in cognitive radio networks. We propose two guaranteed rendezvous algorithms for cognitive radio networks und...Rendezvous is a blind process establishing a communication link on a common channel between a pair of nodes in cognitive radio networks. We propose two guaranteed rendezvous algorithms for cognitive radio networks under both single-radio and multi-radio scenarios with an asynchronous setting. For single-radio scenario, each cycle length is a prime number associated with a channel hopping sequence.The rendezvous can be guaranteed as long as the IDs of the two nodes are different. For multi-radio scenario, we propose a cycle length and rotation based rendezvous algorithm. Each node generates a channel hopping sequence with only one cycle length. Then these radios of each nodes rotate on the generated sequence with different rotation numbers at each hopping cycle. The rendezvous between two nodes is guaranteed as long as they have different cycle lengths or the same cycle length with different number of rotations. We conduct simulations on three metrics and the results show that the proposed algorithms outperform the existing ones.展开更多
基金supported in part by NSF under the grant CNS-1526152
文摘Rendezvous is a blind process establishing a communication link on a common channel between a pair of nodes in cognitive radio networks. We propose two guaranteed rendezvous algorithms for cognitive radio networks under both single-radio and multi-radio scenarios with an asynchronous setting. For single-radio scenario, each cycle length is a prime number associated with a channel hopping sequence.The rendezvous can be guaranteed as long as the IDs of the two nodes are different. For multi-radio scenario, we propose a cycle length and rotation based rendezvous algorithm. Each node generates a channel hopping sequence with only one cycle length. Then these radios of each nodes rotate on the generated sequence with different rotation numbers at each hopping cycle. The rendezvous between two nodes is guaranteed as long as they have different cycle lengths or the same cycle length with different number of rotations. We conduct simulations on three metrics and the results show that the proposed algorithms outperform the existing ones.