AIM: To find the most reproducible quantitative parameter of a standard 13C-methacetin breath test (13C-MBT). METHODS: Twenty healthy volunteers (10 female, 10 male) underwent the 13C-MBT after intake of 75 mg 13C-met...AIM: To find the most reproducible quantitative parameter of a standard 13C-methacetin breath test (13C-MBT). METHODS: Twenty healthy volunteers (10 female, 10 male) underwent the 13C-MBT after intake of 75 mg 13C-methacetin p.o. on three occasions. Short-and medium-term reproducibility was assessed with paired examinations taken at an interval of 2 and 18 d (medians), respectively. RESULTS: The reproducibility of the 1-h cumulative 13C recovery (AUC0-60), characterized by a coefficient of variation of 10%, appeared to be considerably better than the reproducibility of the maximum momentary 13C recovery or the time of reaching it. Remarkably, as opposed to the short gap between consecutive examinations, the capacity of the liver to handle 13C-methacetin increased slightly but statistically significantly when a repeat dose was administered after two to three weeks.Regarding the AUC0-60, the magnitude of this fixed bias amounted to 7.5%. Neither the time gap between the repeat examinations nor the gender of the subjects affected the 13C-MBT reproducibility. CONCLUSION: 13C-MBT is most reproducibly quantified by the cumulative 13C recovery, but the exactitude thereof may be modestly affected by persistent stimulation of CYP1A2 on repeat examinations.展开更多
In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation of the net carbon flux. An optimization scheme is proposed to estimate two key pa...In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (V2max and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate V25max and Q10 of the boreal ecosystem productivity simulator (BEPS) to improve its NEP simulation in the boreal North American region. Then, in situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations from BEPS with initial and optimized parameters. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results implicate that it is possible to optimize ecosystem model parameters by different sensitivities of V25max and Q10 during growing and non-growing seasons through atmospheric inversion or data assimilation techniques.展开更多
基金Supported by The Medical University of Silesia, contracts No. NN-1-106-06, KNW-1-043/08 and KNW-1-154/09
文摘AIM: To find the most reproducible quantitative parameter of a standard 13C-methacetin breath test (13C-MBT). METHODS: Twenty healthy volunteers (10 female, 10 male) underwent the 13C-MBT after intake of 75 mg 13C-methacetin p.o. on three occasions. Short-and medium-term reproducibility was assessed with paired examinations taken at an interval of 2 and 18 d (medians), respectively. RESULTS: The reproducibility of the 1-h cumulative 13C recovery (AUC0-60), characterized by a coefficient of variation of 10%, appeared to be considerably better than the reproducibility of the maximum momentary 13C recovery or the time of reaching it. Remarkably, as opposed to the short gap between consecutive examinations, the capacity of the liver to handle 13C-methacetin increased slightly but statistically significantly when a repeat dose was administered after two to three weeks.Regarding the AUC0-60, the magnitude of this fixed bias amounted to 7.5%. Neither the time gap between the repeat examinations nor the gender of the subjects affected the 13C-MBT reproducibility. CONCLUSION: 13C-MBT is most reproducibly quantified by the cumulative 13C recovery, but the exactitude thereof may be modestly affected by persistent stimulation of CYP1A2 on repeat examinations.
基金supported by the National Basic Research Program of China(2010CB950703)the National Natural Science Foundation of China(41571338)
文摘In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (V2max and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate V25max and Q10 of the boreal ecosystem productivity simulator (BEPS) to improve its NEP simulation in the boreal North American region. Then, in situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations from BEPS with initial and optimized parameters. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results implicate that it is possible to optimize ecosystem model parameters by different sensitivities of V25max and Q10 during growing and non-growing seasons through atmospheric inversion or data assimilation techniques.