In order to achieve dynamical optimization of mobility load balancing,we analyze the conflict between mobility load balancing and mobility robustness optimization caused by the improper operation of handover parameter...In order to achieve dynamical optimization of mobility load balancing,we analyze the conflict between mobility load balancing and mobility robustness optimization caused by the improper operation of handover parameters.To this end,a method of Handover Parameters Adjustment for Conflict Avoidance(HPACA)is proposed.Considering the movement of users,HPCAC can dynamically adjust handover range to optimize the mobility load balancing.The movement of users is an important factor of handover,which has a dramatic impact on system performance.The numerical evaluation results show the proposed approach outperforms the existing method in terms of throughput,call blocking ratio,load balancing index,radio link failure ratio,ping-pong handover ratio and call dropping ratio.展开更多
To address the issue of resource scarcity in wireless communication, a novel dynamic call admission control scheme for wireless mobile network was proposed. The scheme established a reward computing model of call admi...To address the issue of resource scarcity in wireless communication, a novel dynamic call admission control scheme for wireless mobile network was proposed. The scheme established a reward computing model of call admission of wireless cell based on Markov decision process, dynamically optimized call admission process according to the principle of maximizing the average system rewards. Extensive simulations were conducted to examine the performance of the model by comparing with other policies in terms of new call blocking probability, handoff call dropping probability and resource utilization rate. Experimental results show that the proposed scheme can achieve better adaptability to changes in traffic conditions than existing protocols. Under high call traffic load, handoff call dropping probability and new call blocking probability can be reduced by about 8%, and resource utilization rate can be improved by 2%-6%. The proposed scheme can achieve high source utilization rate of about 85%.展开更多
In converged heterogeneous wireless networks, vertical handoff is an important issue in radio resource management and occurs when an end user switches from one network to another (e.g., from wireless local area netwo...In converged heterogeneous wireless networks, vertical handoff is an important issue in radio resource management and occurs when an end user switches from one network to another (e.g., from wireless local area network to wideband code division multiple access). Efficient vertical handoff should allocate network resources efficiently and maintain good quality of service (QoS) for the end users. The objective of this work is to determine conditions under which vertical handoff can be performed. The channel usage situation of each access network is formulated as a birth-death process with the objective of predicting the avaliable bandwidth and the blocking probability. A reward function is used to capture the network bandwidth and the blocking probability is expressed as a cost function. An end user will access the certain network which maximizes the total function defined as the combination of the reward fimction and the cost function. Simulation results show that the proposed algorithm can significantly improve the network performance, including higher bandwidth for end users and lower new call blocking and handoff call blocking probability for networks.展开更多
Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very sca...Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very scarce resource as the radio spectrum. A new scheme was proposed which extends the concepts of resource sharing and reservations for wideband code division multiple access (WCDMA) systems with a unique feature of soft capacity. Voice and data traffic were considered. The traffic is further classified into handoff and new requests. The reservation thresholds were dynamically adjusted according to the traffic pattern and mobility prediction in order to achieve the maximum channel utilization, while guaranteeing different QoS constraints. The performance of proposed scheme was evaluated using Markov models. New call blocking probability, handoff call dropping probability, and channel utilization were used as benchmarks for the proposed scheme.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61071118the National Basic Research Program of China(973 Program)under Grant No.2012CB316004+1 种基金Special Fund of Chongqing Key Laboratory(CSTC)Chongqing Municipal Education Commission’s Science and Technology Research Project under Grant No.KJ111506
文摘In order to achieve dynamical optimization of mobility load balancing,we analyze the conflict between mobility load balancing and mobility robustness optimization caused by the improper operation of handover parameters.To this end,a method of Handover Parameters Adjustment for Conflict Avoidance(HPACA)is proposed.Considering the movement of users,HPCAC can dynamically adjust handover range to optimize the mobility load balancing.The movement of users is an important factor of handover,which has a dramatic impact on system performance.The numerical evaluation results show the proposed approach outperforms the existing method in terms of throughput,call blocking ratio,load balancing index,radio link failure ratio,ping-pong handover ratio and call dropping ratio.
基金Project(60873082) supported by the National Natural Science Foundation of ChinaProject(09C794) supported by the Natural Science Foundation of Education Department of Hunan Province, China+1 种基金Project (S2008FJ3078) supported by the Science and Technology Program Foundation of Hunan Province, ChinaProject(07JJ6109) supported by the Natural Science Foundation of Hunan Province, China
文摘To address the issue of resource scarcity in wireless communication, a novel dynamic call admission control scheme for wireless mobile network was proposed. The scheme established a reward computing model of call admission of wireless cell based on Markov decision process, dynamically optimized call admission process according to the principle of maximizing the average system rewards. Extensive simulations were conducted to examine the performance of the model by comparing with other policies in terms of new call blocking probability, handoff call dropping probability and resource utilization rate. Experimental results show that the proposed scheme can achieve better adaptability to changes in traffic conditions than existing protocols. Under high call traffic load, handoff call dropping probability and new call blocking probability can be reduced by about 8%, and resource utilization rate can be improved by 2%-6%. The proposed scheme can achieve high source utilization rate of about 85%.
基金Project(20040533035) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject (50275150) supported by the National Natural Science Foundation of China
文摘In converged heterogeneous wireless networks, vertical handoff is an important issue in radio resource management and occurs when an end user switches from one network to another (e.g., from wireless local area network to wideband code division multiple access). Efficient vertical handoff should allocate network resources efficiently and maintain good quality of service (QoS) for the end users. The objective of this work is to determine conditions under which vertical handoff can be performed. The channel usage situation of each access network is formulated as a birth-death process with the objective of predicting the avaliable bandwidth and the blocking probability. A reward function is used to capture the network bandwidth and the blocking probability is expressed as a cost function. An end user will access the certain network which maximizes the total function defined as the combination of the reward fimction and the cost function. Simulation results show that the proposed algorithm can significantly improve the network performance, including higher bandwidth for end users and lower new call blocking and handoff call blocking probability for networks.
文摘Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very scarce resource as the radio spectrum. A new scheme was proposed which extends the concepts of resource sharing and reservations for wideband code division multiple access (WCDMA) systems with a unique feature of soft capacity. Voice and data traffic were considered. The traffic is further classified into handoff and new requests. The reservation thresholds were dynamically adjusted according to the traffic pattern and mobility prediction in order to achieve the maximum channel utilization, while guaranteeing different QoS constraints. The performance of proposed scheme was evaluated using Markov models. New call blocking probability, handoff call dropping probability, and channel utilization were used as benchmarks for the proposed scheme.