针对农业病害领域命名实体识别过程中存在的预训练语言模型利用不充分、外部知识注入利用率低、嵌套命名实体识别率低的问题,本文提出基于连续提示注入和指针网络的命名实体识别模型CP-MRC(Continuous prompts for machine reading comp...针对农业病害领域命名实体识别过程中存在的预训练语言模型利用不充分、外部知识注入利用率低、嵌套命名实体识别率低的问题,本文提出基于连续提示注入和指针网络的命名实体识别模型CP-MRC(Continuous prompts for machine reading comprehension)。该模型引入BERT(Bidirectional encoder representation from transformers)预训练模型,通过冻结BERT模型原有参数,保留其在预训练阶段获取到的文本表征能力;为了增强模型对领域数据的适用性,在每层Transformer中插入连续可训练提示向量;为提高嵌套命名实体识别的准确性,采用指针网络抽取实体序列。在自建农业病害数据集上开展了对比实验,该数据集包含2933条文本语料,8个实体类型,共10414个实体。实验结果显示,CP-MRC模型的精确率、召回率、F1值达到83.55%、81.4%、82.4%,优于其他模型;在病原、作物两类嵌套实体的识别率较其他模型F1值提升3个百分点和13个百分点,嵌套实体识别率明显提升。本文提出的模型仅采用少量可训练参数仍然具备良好识别性能,为较大规模预训练模型在信息抽取任务上的应用提供了思路。展开更多
原型网络直接应用于小样本命名实体识别(few-shot named entity recognition,FEW-NER)时存在以下问题:非实体之间不具有较强的语义关系,对实体和非实体都采用相同的方式构造原型将会造成非实体原型不能准确表示非实体的语义特征;仅使用...原型网络直接应用于小样本命名实体识别(few-shot named entity recognition,FEW-NER)时存在以下问题:非实体之间不具有较强的语义关系,对实体和非实体都采用相同的方式构造原型将会造成非实体原型不能准确表示非实体的语义特征;仅使用平均实体向量表示作为原型的计算方式将难以捕捉语义特征相差较大的同类实体.针对上述问题,提出基于细粒度原型网络的小样本命名实体识别(FEW-NER based on fine-grained prototypical networks,FNFP)方法,有助于提高小样本命名实体识别的标注效果.首先,为不同的查询集样本构造不同的非实体原型,捕捉句子中关键的非实体语义特征,得到更为细粒度的原型,提升模型对非实体的识别效果;然后,设计一个不一致性度量模块以衡量同类实体之间的不一致性,对实体与非实体采用不同的度量函数,从而减小同类样本之间的特征表示,提升原型的特征表示能力;最后,引入维特比解码器捕捉标签转换关系,优化最终的标注序列.实验结果表明,采用基于细粒度原型网络的小样本命名实体识别方法,在大规模小样本命名实体识别数据集FEW-NERD上,较基线方法获得提升;同时在跨领域数据集上验证所提方法在不同领域场景下的泛化能力.展开更多
为解决多模态命名实体识别(Multimodal named entity recognition,MNER)方法研究中存在的图像特征语义缺失和多模态表示语义约束较弱等问题,提出多尺度视觉语义增强的多模态命名实体识别方法(Multi-scale visual semantic enhancement f...为解决多模态命名实体识别(Multimodal named entity recognition,MNER)方法研究中存在的图像特征语义缺失和多模态表示语义约束较弱等问题,提出多尺度视觉语义增强的多模态命名实体识别方法(Multi-scale visual semantic enhancement for multimodal named entity recognition method,MSVSE).该方法提取多种视觉特征用于补全图像语义,挖掘文本特征与多种视觉特征间的语义交互关系,生成多尺度视觉语义特征并进行融合,得到多尺度视觉语义增强的多模态文本表示;使用视觉实体分类器对多尺度视觉语义特征解码,实现视觉特征的语义一致性约束;调用多任务标签解码器挖掘多模态文本表示和文本特征的细粒度语义,通过联合解码解决语义偏差问题,从而进一步提高命名实体识别准确度.为验证该方法的有效性,在Twitter-2015和Twitter-2017数据集上进行实验,并与其他10种方法进行对比,该方法的平均F1值得到提升.展开更多
文摘针对农业病害领域命名实体识别过程中存在的预训练语言模型利用不充分、外部知识注入利用率低、嵌套命名实体识别率低的问题,本文提出基于连续提示注入和指针网络的命名实体识别模型CP-MRC(Continuous prompts for machine reading comprehension)。该模型引入BERT(Bidirectional encoder representation from transformers)预训练模型,通过冻结BERT模型原有参数,保留其在预训练阶段获取到的文本表征能力;为了增强模型对领域数据的适用性,在每层Transformer中插入连续可训练提示向量;为提高嵌套命名实体识别的准确性,采用指针网络抽取实体序列。在自建农业病害数据集上开展了对比实验,该数据集包含2933条文本语料,8个实体类型,共10414个实体。实验结果显示,CP-MRC模型的精确率、召回率、F1值达到83.55%、81.4%、82.4%,优于其他模型;在病原、作物两类嵌套实体的识别率较其他模型F1值提升3个百分点和13个百分点,嵌套实体识别率明显提升。本文提出的模型仅采用少量可训练参数仍然具备良好识别性能,为较大规模预训练模型在信息抽取任务上的应用提供了思路。
文摘原型网络直接应用于小样本命名实体识别(few-shot named entity recognition,FEW-NER)时存在以下问题:非实体之间不具有较强的语义关系,对实体和非实体都采用相同的方式构造原型将会造成非实体原型不能准确表示非实体的语义特征;仅使用平均实体向量表示作为原型的计算方式将难以捕捉语义特征相差较大的同类实体.针对上述问题,提出基于细粒度原型网络的小样本命名实体识别(FEW-NER based on fine-grained prototypical networks,FNFP)方法,有助于提高小样本命名实体识别的标注效果.首先,为不同的查询集样本构造不同的非实体原型,捕捉句子中关键的非实体语义特征,得到更为细粒度的原型,提升模型对非实体的识别效果;然后,设计一个不一致性度量模块以衡量同类实体之间的不一致性,对实体与非实体采用不同的度量函数,从而减小同类样本之间的特征表示,提升原型的特征表示能力;最后,引入维特比解码器捕捉标签转换关系,优化最终的标注序列.实验结果表明,采用基于细粒度原型网络的小样本命名实体识别方法,在大规模小样本命名实体识别数据集FEW-NERD上,较基线方法获得提升;同时在跨领域数据集上验证所提方法在不同领域场景下的泛化能力.
文摘为解决多模态命名实体识别(Multimodal named entity recognition,MNER)方法研究中存在的图像特征语义缺失和多模态表示语义约束较弱等问题,提出多尺度视觉语义增强的多模态命名实体识别方法(Multi-scale visual semantic enhancement for multimodal named entity recognition method,MSVSE).该方法提取多种视觉特征用于补全图像语义,挖掘文本特征与多种视觉特征间的语义交互关系,生成多尺度视觉语义特征并进行融合,得到多尺度视觉语义增强的多模态文本表示;使用视觉实体分类器对多尺度视觉语义特征解码,实现视觉特征的语义一致性约束;调用多任务标签解码器挖掘多模态文本表示和文本特征的细粒度语义,通过联合解码解决语义偏差问题,从而进一步提高命名实体识别准确度.为验证该方法的有效性,在Twitter-2015和Twitter-2017数据集上进行实验,并与其他10种方法进行对比,该方法的平均F1值得到提升.