期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于中文医药文本的实体识别和图谱构建 被引量:1
1
作者 杨晔 裴雷 侯凤贞 《中国药科大学学报》 CAS CSCD 北大核心 2023年第3期363-371,共9页
知识图谱技术促进了新药研发的进展,但国内研究起点晚且领域知识多以文本形式存储,图谱重用率低。因此,本研究基于多源异构的医药文本,设计了以Bert-wwm-ext预训练模型为基础,并融合级联思想的中文命名实体识别模型,从而减少了传统单次... 知识图谱技术促进了新药研发的进展,但国内研究起点晚且领域知识多以文本形式存储,图谱重用率低。因此,本研究基于多源异构的医药文本,设计了以Bert-wwm-ext预训练模型为基础,并融合级联思想的中文命名实体识别模型,从而减少了传统单次分类的复杂度,进一步提高了文本识别的效率。实验结果显示,该模型在自建的训练语料上的F1分数达0.903,精确率达89.2%,召回率达91.5%。同时,将模型应用于公开数据集CCKS2019上,结果显示该模型能够更好地识别中文文本中的医疗实体。最后,利用此模型构建了一个中文医药知识图谱,图谱包含13530个实体,10939个属性,以及39247个相关关系。本研究所提出的中文医药实体识别与图谱构建方法,有望助力研究者加快医药知识新发现,从而缩短新药研发进程。 展开更多
关键词 中文医药文本 命名实体识别模型 Bert-wwm-ext预训练模型 级联思想 知识图谱
下载PDF
基于Bert的中医方剂文本命名实体识别 被引量:1
2
作者 徐丽娜 李燕 +2 位作者 钟昕妤 陈月月 帅亚琦 《医学信息》 2023年第4期32-37,共6页
针对中医药领域常用命名实体识别模型存在的边界模糊和歧义性等问题,本文提出基于大规模预处理中文语言模型(Bert)的中医方剂文本命名实体识别方法。通过Bert预训练模型接受其相对应的词向量,将预处理完成的词向量输入到长短期记忆(Bi-L... 针对中医药领域常用命名实体识别模型存在的边界模糊和歧义性等问题,本文提出基于大规模预处理中文语言模型(Bert)的中医方剂文本命名实体识别方法。通过Bert预训练模型接受其相对应的词向量,将预处理完成的词向量输入到长短期记忆(Bi-LSTM)模块中,完成对文本上下文语义信息的捕获,最后使用条件随机场(CRF)模块解码输出得到的预测标签排序,依次检索和排序各类中医方剂文本实体,从而完成整个实体识别步骤,结果显示出Bert对中医方剂各类实体识别具有较高的适用性,中医方剂各类实体识别的准确率得到显著提升。 展开更多
关键词 深度学习 中医方剂 命名实体识别模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部