期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
数学“对偶”欣赏
1
作者 韩松桥 《高中数学教与学》 2002年第2期64-65,共2页
“明月松间照,清泉石上流”,一幅绝妙的对偶,让人感到美不胜收.在数学解题过程中,如果我们能恰当地运用对偶关系,不仅能提高解题速度,同样会给人带来美的享受.本文略举几例,与大家共赏.
关键词 数学解题 对偶 正弦余弦对偶 和差对偶 倒数对偶 共轭复数对偶
原文传递
Koszul Differential Graded Algebras and BGG Correspondence II 被引量:1
2
作者 Jiwei HE Quanshui WU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2010年第1期133-144,共12页
The concept of Koszul differential graded (DG for short) algebra is introduced in [8].Let A be a Koszul DG algebra.If the Ext-algebra of A is finite-dimensional,i.e.,the trivial module A k is a compact object in the d... The concept of Koszul differential graded (DG for short) algebra is introduced in [8].Let A be a Koszul DG algebra.If the Ext-algebra of A is finite-dimensional,i.e.,the trivial module A k is a compact object in the derived category of DG A-modules,then it is shown in [8] that A has many nice properties.However,if the Ext-algebra is infinitedimensional,little is known about A.As shown in [15] (see also Proposition 2.2),A k is not compact if H(A) is finite-dimensional.In this paper,it is proved that the Koszul duality theorem also holds when H(A) is finite-dimensional by using Foxby duality.A DG version of the BGG correspondence is deduced from the Koszul duality theorem. 展开更多
关键词 Koszul differential graded algebra Koszul duality BGG correspondence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部