By means of the theory of harmonic maps into the unitary group U(N), the authors study harmonic maps into the symplectic group Sp(N). The symplectic uniton and symplectic ex--tended uniton are introduced. The method o...By means of the theory of harmonic maps into the unitary group U(N), the authors study harmonic maps into the symplectic group Sp(N). The symplectic uniton and symplectic ex--tended uniton are introduced. The method of the symplectic Backlund transformation and the Darboux transformation is used to construct new symplectic unitons from a known one.展开更多
It is known that there is a very closed connection between the set of non-isomorphic indecomposable basic Nakayama algebras and the set of admissible sequences.To determine the cardinal number of all nonisomorphic ind...It is known that there is a very closed connection between the set of non-isomorphic indecomposable basic Nakayama algebras and the set of admissible sequences.To determine the cardinal number of all nonisomorphic indecomposable basic Nakayama algebras,we describe the cardinal number of the set of all t-length admissible sequences using a new type of integers called quasi-binomial coefficients.Furthermore,we find some intrinsic relations among binomial coefficients and quasi-binomial coefficients.展开更多
基金Project supported by the National Natural Science Foundation of China (No.19531050)the Scientific Foundation of the Minnstr
文摘By means of the theory of harmonic maps into the unitary group U(N), the authors study harmonic maps into the symplectic group Sp(N). The symplectic uniton and symplectic ex--tended uniton are introduced. The method of the symplectic Backlund transformation and the Darboux transformation is used to construct new symplectic unitons from a known one.
基金supported by Shandong Provincial Natural Science Foundation of China (Grant No.ZR2011AM005)National Natural Science Foundation of China (Grant No.10931006)Shanghai Municipal Natural Science Foundation (Grant No.12ZR1413200)
文摘It is known that there is a very closed connection between the set of non-isomorphic indecomposable basic Nakayama algebras and the set of admissible sequences.To determine the cardinal number of all nonisomorphic indecomposable basic Nakayama algebras,we describe the cardinal number of the set of all t-length admissible sequences using a new type of integers called quasi-binomial coefficients.Furthermore,we find some intrinsic relations among binomial coefficients and quasi-binomial coefficients.