We give the sharp estimates for the degree of symmetry and the semi-simple degree of symmetry of certain compact fiber bundles with non-trivial four dimensional fibers in the sense of cobordism, by virtue of the rigid...We give the sharp estimates for the degree of symmetry and the semi-simple degree of symmetry of certain compact fiber bundles with non-trivial four dimensional fibers in the sense of cobordism, by virtue of the rigidity theorem of harmonic maps due to Schoen and Yau (Topology, 18, 1979, 361-380). As a corollary of this estimate, we compute the degree of symmetry and the semi-simple degree of symmetry of CP2×V, where V is a closed smooth manifold admitting a real analytic Riemannian metric of non-positive curvature. In addition, by the Albanese map, we obtain the sharp estimate of the degree of symmetry of a compact smooth manifold with some restrictions on its one dimensional cohomology.展开更多
This paper is concerned with the boundedness of solutions for second order differential equations x + f(x, t)x + g(x, t) = 0, which are neither dissipative nor conservative, and where the functions f and g are odd in ...This paper is concerned with the boundedness of solutions for second order differential equations x + f(x, t)x + g(x, t) = 0, which are neither dissipative nor conservative, and where the functions f and g are odd in x and even in t, which are 1-periodic in t, and the function g satisfies g(x,t/x+, as|x| - +. Using the KAM theory for reversible systems, the author proves the existence of invariant tori and thus the boundedness of all the solutions and the existence of quasiperiodic solutions and subharmonic solutions.展开更多
基金Project supported by the Japanese Government Scholarshipthe Japan Society for the Promotion of Science Postdoctoral Fellowship for Foreign Researchers+2 种基金the Focused Research Group Postdoctoral Fellowshipthe Program of Visiting Scholars at Chern Institute of Mathematicsthe National Natural Science Foundation of China (No. 10601053).
文摘We give the sharp estimates for the degree of symmetry and the semi-simple degree of symmetry of certain compact fiber bundles with non-trivial four dimensional fibers in the sense of cobordism, by virtue of the rigidity theorem of harmonic maps due to Schoen and Yau (Topology, 18, 1979, 361-380). As a corollary of this estimate, we compute the degree of symmetry and the semi-simple degree of symmetry of CP2×V, where V is a closed smooth manifold admitting a real analytic Riemannian metric of non-positive curvature. In addition, by the Albanese map, we obtain the sharp estimate of the degree of symmetry of a compact smooth manifold with some restrictions on its one dimensional cohomology.
文摘This paper is concerned with the boundedness of solutions for second order differential equations x + f(x, t)x + g(x, t) = 0, which are neither dissipative nor conservative, and where the functions f and g are odd in x and even in t, which are 1-periodic in t, and the function g satisfies g(x,t/x+, as|x| - +. Using the KAM theory for reversible systems, the author proves the existence of invariant tori and thus the boundedness of all the solutions and the existence of quasiperiodic solutions and subharmonic solutions.