It is proved that if f is a Teichmuller self-mapping of the unit disk with a holomorphic quadratic deferential and satisfies the growth condition m(ψ,r)= o((1 -r)-), r→1, for any s>1, then f is extremal, and the...It is proved that if f is a Teichmuller self-mapping of the unit disk with a holomorphic quadratic deferential and satisfies the growth condition m(ψ,r)= o((1 -r)-), r→1, for any s>1, then f is extremal, and there exists a sequence {tn}, 0<tn<1, /lim, tn =1, such that {(tnz)} is a Hamilton sequence. It is the precision of a theorem of Reich-Strebel in 1974, and gives a fairly satisfactory answer to a question of Reich in 1988.展开更多
基金the National Natural Science Foundation of China!(No.19531060), the DoctoralProgram Fundation of the Ministry of Education o
文摘It is proved that if f is a Teichmuller self-mapping of the unit disk with a holomorphic quadratic deferential and satisfies the growth condition m(ψ,r)= o((1 -r)-), r→1, for any s>1, then f is extremal, and there exists a sequence {tn}, 0<tn<1, /lim, tn =1, such that {(tnz)} is a Hamilton sequence. It is the precision of a theorem of Reich-Strebel in 1974, and gives a fairly satisfactory answer to a question of Reich in 1988.