针对快速压缩跟踪算法(FCT)分类器参数更新盲目、目标尺寸固定和未能跟踪目标完全遮挡再出现的问题,提出一种融合感知哈希的快速压缩跟踪算法(Fast compressive tracking algorithm based on perceptual hashing,PH-FCT).首先,使用压缩...针对快速压缩跟踪算法(FCT)分类器参数更新盲目、目标尺寸固定和未能跟踪目标完全遮挡再出现的问题,提出一种融合感知哈希的快速压缩跟踪算法(Fast compressive tracking algorithm based on perceptual hashing,PH-FCT).首先,使用压缩特性构建目标和背景的贝叶斯分类器,同时生成目标的感知哈希描述子;使用分类器获得下一帧响应值最高的样本,以样本为中心采集不同尺寸区域,计算它们与目标的汉明距离,若最小汉明距离小于阈值,则视当前尺寸区域为目标区域,更新目标信息(目标位置、尺寸和感知哈希描述子)与分类器参数,并标记当前帧检测到目标,否则不更新且标记当前帧未检测到目标.当上一帧被标记为未检测到目标,则当前帧使用全图等间隔采样,样本个数与FCT算法粗采样一致,使用分类器得出响应值最高的样本,再以该样本中心为圆心,半径为5的圆形区域遍历精确采样,得出最有可能是目标的样本,最后通过判断汉明距离决定是否更新参数.实验结果表明,该算法在抗遮挡性、有效性和鲁棒性上优于FCT算法,且拥有较好的目标自找回能力,为目标的快速跟踪提供一种新的方法.展开更多
文摘针对快速压缩跟踪算法(FCT)分类器参数更新盲目、目标尺寸固定和未能跟踪目标完全遮挡再出现的问题,提出一种融合感知哈希的快速压缩跟踪算法(Fast compressive tracking algorithm based on perceptual hashing,PH-FCT).首先,使用压缩特性构建目标和背景的贝叶斯分类器,同时生成目标的感知哈希描述子;使用分类器获得下一帧响应值最高的样本,以样本为中心采集不同尺寸区域,计算它们与目标的汉明距离,若最小汉明距离小于阈值,则视当前尺寸区域为目标区域,更新目标信息(目标位置、尺寸和感知哈希描述子)与分类器参数,并标记当前帧检测到目标,否则不更新且标记当前帧未检测到目标.当上一帧被标记为未检测到目标,则当前帧使用全图等间隔采样,样本个数与FCT算法粗采样一致,使用分类器得出响应值最高的样本,再以该样本中心为圆心,半径为5的圆形区域遍历精确采样,得出最有可能是目标的样本,最后通过判断汉明距离决定是否更新参数.实验结果表明,该算法在抗遮挡性、有效性和鲁棒性上优于FCT算法,且拥有较好的目标自找回能力,为目标的快速跟踪提供一种新的方法.